论文写作的10个技巧

写论文的7个技巧

(1)积极可视化的艺术:从图开始。

在职业生涯的早期,我从成名的同事那里学到了一个很好的策略,那就是文章从图开始,甚至在我们写论文和收集数据之前就开始!

这对论文的逻辑和流程有很大帮助,图中的空缺和漏洞告诉我们还有哪些未完成的工作,这有助于预估时间。

(2)概述逻辑和叙述:在这个阶段获得大量的反馈,然后进行迭代和优化。

在写文章之前,以流程图的形式写下观点的逻辑顺序,以及两者间的关系,还要与同事和导师经常讨论这个问题,这些将使文章更清晰。

当完成了这一点,手稿几乎是水到渠成,然后是迭代、重新排序或意识到缺少一个关键的实验。

如果在这个阶段得到大量反馈,那么后续的痛苦就会减少。

(3)最好的叙述不是按你工作的时间顺序。

你有一个想法,你尝试它,失败了,你有另一个想法,你认为那是可行的,但后来发现那是个伪命题。

你不需要按照事情发生的顺序来讲述故事。如果你这样做,可能很难让别人看懂,应制定一个流畅、易于理解和吸引读者的顺序。

(4)早期的失败可以帮助你在读者中创造一种戏剧性的紧张感和期待感。

如果我们第一次尝试就成功了,那么这项成就不太可能是由深刻和原始推理的实质性进展。

你可以回顾一下实验的实际工作情况,你会发现,开始的尝试往往是没有按预期的那样进行。你尝试了一个专家会做的且显而易见的事情,但这种方法却失败了。


这为你的最终成功奠定了基础,并将强调它并非微不足道,相反,它需要创新,然后,我们从这些失败中吸取教训。

这些研究很可能会关注到以前被忽视或未被充分重视的因素。开发的新模型将说明如何创新地解决这个问题:只有通过做X,才能克服当前被理解的机制,我们现在知道这种机制是明显组合失败的根源。

上面概述的方法并不是写一篇有趣和吸引人的论文的唯一方法,但它说明了许多好论文的一个更广泛原则:它们有一个情节。

通常会有挣扎和失望;然后是由好奇心驱动的一系列研究,由此产生的见解,将促成进入创新阶段;最后是依靠创新步骤取得重大成就。

(5)自豪地站在巨人的肩膀上,清楚地描绘前人工作完成的时间,以及后续发展。

文献综述应该提到前人的研究,他们的工作构成了你研究项目的基础,之后,用新的段落清楚地过渡到你的新努力/假设/尝试。切记,将前人的工作和你的工作清楚地划分出来。

(6)危害和解决方法应该是相称的、彼此成比例的,并且应该精确地制定。

危害和解决方法需要适度、精确,并且彼此相称。借用杰出的Yogi Surendranath教授的话:如果你提出的危害(需要克服的问题)是“世界每年排放39G吨CO2”,那么解决方法(你的成就)需要是,你在论文结束时达到碳中和。

(7)在论文达到90%的完美程度就可提交。

审稿人通常会要求你做更多的工作,但很难预测他们到底想要什么?

这正是同行评审过程的魅力所在:我们从审稿人的反馈中学到的东西有巨大的信息量和价值,我们无法预测会是什么?

审稿人总是会发现一些东西,而这些东西总是让论文变得更好。

为审稿人创造一个机会,让他们提供有价值的反馈。在他们的帮助下,你了解到你需要什么来完善这篇论文。

有一些缺陷是可以的,但论文必须有足够高的质量和严谨性,以便与审稿人进行实质性对话。

另外就是,即便你认为你的论文是完美的,审稿人也不会这么认为。

另外3个考虑因素:

(8)解读同行评审意见:我怎样才能利用这些反馈来改进工作?

评审报告往往包含建设性的建议,这些建议旨在帮助你更好地撰写论文。有时,它们还会包含一些让你觉得苛刻或消极的语言,不过我们应该在批评中找到建设性的意见。

严格的反馈包含了误解,因此再次提交时要提高论文的清晰度。通常,反馈意见是让你对你的研究结果进行其他解释(这些想法并不在你的初稿中)。

尽量避免在回复中与审稿人争论,相反,应试图说明我们如何根据他们的反馈使工作变得更好。

(9)关于Cover Letter。

根据我的经验,期刊编辑会阅读Cover Letter和手稿。由于这个原因,我们不会在这两份文件中重复相同的内容。通常,Cover Letter会更有吸引力,更容易理解。它将包含一个视觉元素(图形或表格),以说明主要的新想法和应用成果。

我倾向于提供大约10-12个审稿人(听起来很多),但即使是影响因子最高的期刊,他们的编辑也很难找到审稿人。

我推荐审稿人时,通常采取推荐竞争对手的方法:选择我所在领域和相关领域中最严谨、最专业的人。通过这种方式,我得到了最高质量的反馈,并向编辑传达我对工作的信心。

我力求审稿人名单的多样性:有些人可以审查理论,有些人可以审查某些关键的实验方法,有些人可以审查系统层面的大局,更关键是还有地域、性别、职业阶段等方面的多样性。

(10)照我说的做,而不是照我做的做。(个人觉得这点没有什么实质建议)

读者会在我们小组过去24年的论文中发现上述的一些内容,也会发现许多违反这些准则的情况!

上面所写的,是我在2022年7月的某一天吃早餐时,对论文写作的艺术和科学的看法。它随着时间的推移不断发展,直到今天,仍然是不断发展的。

我鼓励大家发展和优化你们自己的学术传播哲学,定期思考并写下来,将自己的个人视角带到你们的工作中。

香港的国安法随想

香港的事情闹得沸沸扬扬,经济形势和国际形象都受到重创。没有时间去关注事情的来龙去脉,只是随便谈谈自己的疑问。

第一,香港对于中国的地位。对于中央政府最近几年在香港跃跃欲试、急不可耐的态度比较疑惑。如果维持香港的所有不变,对于发挥英国殖民时代留下的经济遗产和品牌遗产作用,维持香港在中国整体经济中的桥头堡作用难道不是有利的吗?对于推动一国两制及解决台湾问题,不是一个很好的垂范作用吗?为什么非要亲手毁掉呢?

第二,对于香港市民对中央政府的敌对,也难以理解。香港在殖民时代虽然取得了高速经济发展,成为一个全球化的城市,但这背后的“依山傍水”,也就是靠着体量巨大的中国大陆,也是分不开的。真的有人会去谋求港独吗?

第三,对于国安法的看法。我不是法律人士,我看国安法更多就像看故事一样。其中第29条,“通過各種非法方式引發香港特別行政區居民對中央人民政府或者香港特別行政區政府的憎恨並可能造成嚴重後果。”,我看完后居然笑了。这种法律条文简直就是搞笑。想起前几年通过的“嫖宿幼女“这个法案,不知道中国当年起草第一部宪法的那些学界鸿儒在地下对如今这些不肖后辈作何感想。什么样的人,在中国主导法律条文的起草、修改和制定?

Mac Finder 几个基本技巧

使用mac差不多10年了,但是许多tips也是需要慢慢掌握。

其中一个痛点是,有时候总是找不到下载的文件在哪里。虽然可以在文件夹里按『arrange by』,然后根据『data added』来排序,但是问题是:如果我上次退出finder时文件已经处于按『date added』来排序的,再次排序需要重启finder。

经过几次网上搜索,发现比较好的解决方法:

1、将文件夹修改默认为按『kind』进行排列

2、在浏览文件时,点击view的第二栏,即按列表形式阅览。这样就可以像Windows那样,按照时间、文件大小等对文件进行排序。

第二个需要解决的问题是,Mac系统自带文件夹都是蓝色的,这样如果有很多文件夹时不易区分。所以最好需要用颜色进行区分。

解决方法一:https://www.businessinsider.com/how-to-change-color-of-folder-on-mac

解决方法二:使用app image2icon,这样甚至可以创建很有特色的图标

 

常用app的url scheme

利用Launch Center Pro来快速启动app,玩了好些年了。很方便。这其中一个关键是获取app的url scheme。

iOS app的URL Schemes是存放在应用ipa里的Info.plist文件中的。Apple Configurator 2是Apple提供的一个工具,可以给手机安装app、描述文件等,可以用来获取第三方app的ipa文件及Info.plist。

  1. 在Mac上安装打开Apple Configurator 2,并连接手机。
  2. 点击菜单栏中的添加按钮,选择应用,进入添加应用页面
  3. 在搜索框中选择想要查看的第三方app,然后添加即可。
  4. 如果你的手机上没有此app,那么第一次会直接安装,需要进行第二次相同的操作,此时Apple Configurator 2会提醒你,你的手机上已经有此app,询问你是覆盖还是终止操作,不要选择覆盖,也不要选择终止,先把这个对话框搁置那里,然后打开Finer,在前往文件夹中搜索 ~/Library/Group Containers/K36BKF7T3D.group.com.apple.configurator/Library/Caches/Assets/TemporaryItems/MobileApps/,此时该文件夹中就有你刚刚下载app的ipa文件了,把这个ipa文件移到到桌面。
  5. 在桌面存放的ipa文件改为zip格式,解压后便可找到info.plist文件,及对应的url scheme。

常用app的url scheme:

  1. 华盛顿邮报:washpost://
  2. 华尔街日报:wsj://
  3. 墨客:com.moke.moke:
  4. qq音乐:wx5aa333606550dfd5
  5. 网易音乐: orpheuswidget://
  6. 静雅思听:justing://

生信分析:自己学会执行代码,还是使用现成的图形化工具?

Browsing RNA-Seq Data in Ensembl https://www.youtube.com/watch?v=9NUibgdkTRY&feature=emb_logo

If you’re a bench biologist who has decided to incorporate next-generation sequencing (NGS) bioinformatics into your research, you might be feeling overwhelmed as you try to process the data. I felt that way when I did gene expression analysis for the first time, but I quickly learned that NGS bioinformatics is not only powerful but can also be fun! Here are some insights to keep in mind while you navigate these data-ridden waters. (If you’re interested in becoming a bioinformatician, Asmaa Ali’s article on the topic is a great place to start.)

To Code or Not to Code?

Coding is no longer a prerequisite for performing NGS bioinformatics in your research, although it is if bioinformatics is going to be your profession or constitute the meat of your research. If not, consider the advantages and disadvantages of going the coding route.

The Benefits of Learning to Code

Coding the calculations yourself will give you a lot of control. In addition, the software that requires you to code to extract data is mostly open-source—in other words, free of charge, making your research cheaper. But maybe you’ve never used coding languages before, and they read like gibberish to you.

Fortunately, the websites that provide the software programming environments, including Python and R, which are most commonly used for bioinformatics, contain resources to get you started learning to use them. The Python site has step-by-step tutorials, as written instructions and as audio/video clips, and the R site has manuals and a book list.

If books are your thing, this book is great for getting started with Bioconductor, a software package specifically for high-throughput genomics that’s mostly distributed as an add-on module in R. For more instruction, MIT OpenCoursewareUCLA Coding Boot Camp, and Codecademy are just a few examples of places where you can take coding courses online.

Graphical User Interfaces Allow You to Avoid Coding

If you’d like to skip the coding aspect of NGS bioinformatics, you (or your company) might want to invest in a graphical user interface (GUI) program – i.e., one that doesn’t require a coding language. If you’re in academia, your university likely already has subscriptions to such programs and it won’t cost you or your lab a penny to use them; you’d just need to apply for a login account.

For instance, to help me analyze my RNA-seq data, my university provided me with Partek Flow and Partek Genomics Suite, as well as a wonderful program from Qiagen called Ingenuity Pathway Analysis (IPA), which yields a downstream analysis of the biological functions affected by the genes or transcripts in your data.

If you’re in industry, AltAnalyzeApache Taverna, and UGENE are free alternatives to the Partek suite. You might also talk your boss into investing in software from Partek or Qiagen, or make the investment yourself if you own the company. Ultimately, it’s a judgment call, depending on your company’s finances, how satisfied you are with open source software, and the extent to which you intend to use bioinformatics going forward.

Learn Some Linux Commands

A final note about code: I recommend that, even if you find you don’t need code for your NGS bioinformatics, try to learn at least a few Linux commands, if only just to set up the file transfers you’ll need to get started. Even GUI programs sometimes have a few early steps at the command line. For instance, say you are doing an entire NGS project on Partek Flow. Before the NGS bioinformatics even begins, you will likely need to transfer the raw sequencing data files from the server that performed the sequencing to your computer or (more likely) cloud service for storing and running processes that take up large amounts of space. Transferring the files at a Linux command line would minimize the chance of the process freezing mid-transfer, as is often seen with GUIs (Google Drive, for one, is notorious for file downloads freezing after the first 2.0 GB).

The Linux command line is readily accessible on a Mac or a computer running a Linux operating system, but with a client app such as PuTTY it is also easy to run Linux commands on a PC. Maker Pro provides one of many resource pages for learning Linux commands, which I have found to be much easier to remember than other programming languages. Besides, a bit of experience typing in commands will ready your brain for learning more code if you do decide to wade deeper into the wonderful world of computation one day.

Gather Your Resources

Whichever path of programs you choose, your learning curve will be steep in the beginning. Fortunately, many of the sources for learning programming languages also teach bioinformatics. If you’re at a university, your library is likely to have people whose job it is to connect you to the bioinformatics programs available at the school and teach you how to use them. In addition to finding help at the library, GUI programs, like programming language platforms, provide a lot of instruction on their own websites. Qiagen has a particularly impressive and still growing list of in-depth tutorial videos on ways to use IPA as well as the company’s other bioinformatics tools. AltAnalyze, Apache Taverna, and UGENE also come with their own tutorials. Free bioinformatics help is available at Biostars.

Always remember: you’ll have a lot of big and little questions that you can always type word for word into a search engine. Chances are, it’ll refer you to a forum where someone else asked the same question, and got answers! Personally, I Google shamelessly for all my projects, bioinformatics and otherwise. Of course, you could always ask the question yourself on Quora, Reddit (particularly at the r/learnbioinformatics subreddit), or ResearchGate, but if you start with Google, you could get your answer right away.

More resources for teaching yourself NGS analysis are listed here and, for learning a coding language, here and here.

Your Project, Your Interpretation, Your Decisions

So you’ve run your NGS bioinformatics analyses and ended up with huge tables and tangles of networks. What now? Remember that you ultimately want to tell a verifiable story, not just cough up a bunch of numbers.

Make Sure Your Analysis Algorithms Were Sound

First off, it’s imperative to check that your in-silico data are reliable and not just artifacts of the combination of programs you happened to choose. That step wherein you normalize your gene counts, for example. Which algorithm did you use? Another algorithm could have generated a completely different list of statistically significant reads. It’s advantageous if your project involves many knowns alongside your unknowns. If you’re checking a cell population that you know expresses certain cytokines more than another cell population but you have no idea whether or not it expresses more enzymes, check the cytokines. Do their expression patterns, using the algorithms you used, match those seen in the literature? If not, you’ll have to try a different algorithm (and the normalization step is usually a good place to start trying changes).

You may end up running three different algorithms for your NGS analysis, running functional analyses on all the results, and ending up with Venn diagrams showing a relatively small list on which they all agree! And that might already be your story (for now) if little is known about what you’re studying.  If, again, you have a lot of knowns, let them be your guidepost and they’ll save you a lot of repetition. Your unknowns are where you’ll want to explore.

Getting Creative With the Unknowns

Your NGS will almost certainly include genes whose expression patterns were not previously known in your tissue(s) of interest. Use them as a springboard for the next chapter of your project! Maybe you love endocytosis and it’s never been studied in the tissue your samples are from. Does your functional analysis show you statistically significant patterns for that? Sometimes you’ll get the most interesting answers when you pull from your data rather than let your data push at you.

Don’t worry if what you picked isn’t what has the highest-magnitude change in your data. It’s YOUR story, and your experiments will tell you whether you’re onto something or not. Combine poring over your tables with some good old-fashioned paper-reading about genes that have piqued your interest, and start planning that benchwork! After all, bioinformatics is a hypothesis generator, not a decision-maker. The latter role belongs to you! (Well, your PI, too, if you have one.)

Time Management Is Key

Bioinformatics means planning your time as much as you do with hands-on science that calls for lengthy experiments. You never know when you’ll have to repeat an analysis with one or two changes (see above). Some analysis steps take hours or even days to run (in the background while you do other stuff). Oftentimes there are bugs and downtimes for program administrators to fix them or make upgrades. So, as with pretty much any sizeable task, set aside more time than you think you’ll need and don’t wait until you’re near a deadline to start.

As you’ve seen, bioinformatics is fascinating, widely useful, and surprisingly accessible. The keys to succeeding in it are to find the right resources for you and never stop steering the big data ship. Good luck with your projects!

Separating cells is hard

greenfluorescentblog

I write this entry to accompany my short talk at Woodstock.bio meeting ( #physiologicalirrelevantconference ) .

A few years ago we published a paper in PNAS in which we showed that full-length mRNAs transfer between mammalian cells via a unique type of structure called membrane nanotubes, or tunneling nanotubes (TNTs). This work was started at Rob Singer’s lab, continued at the Gerst lab and in collaboration with Arjun Raj.

I wrote a “behind the scenes” post, detailing how that paper came to be, and some of the problems I had along the way.

I next published a method paper, which also included some new information – in particular that the transferred mRNA is encapsulated in an unknown protein shell. I wrote a “behind the paper” post at the Springer Nature blogs. There, I told about all the problems I had just because a simple change…

View original post 610 剩余字数

新冠病毒是人造病毒的泄漏?

一直以来觉得武汉的病毒来得蹊跷:全国不是只有武汉人才吃蝙蝠,也不是只有武汉才有野生动物交易市场。为何病毒感染爆发于武汉?

除了武汉这个城市的特征,还在于武汉有两个研究病毒学的机构:中科院武汉病毒所,和武汉大学病毒学国家实验室,这还不算:他们研究冠状病毒包括SARS;这还是不算:他们一直都在全国抓蝙蝠,进行病毒溯源。而这次武汉病毒与他们报道的蝙蝠病毒同源性最高。很难洗清干系。

今天赛先生推出一篇文章,对病毒实验室泄露的猜疑,进行了还击,有两个结论是可信的:第一,这次病毒泄露和nature med那篇文章报道的重组病毒无关;二,没有证据表明这次病毒是经过实验室重组获得的:https://mp.weixin.qq.com/s/zV4T4xpFa-ljU5zanKD-DQ

但是这篇文章也有可商榷之处:

1、文章说,“既然科学家可以通过改造减弱病毒的能力,是否也能做类似的实验来增强病毒的毒力?实际上,一方面“改坏”基因的功能比“改好”要容易的多;另一方面,科学伦理也要求不能制造超出自然风险的新物种。就本实验来说,也遵循了不将天然病毒强化的基本伦理原则。”

如果这些研究者为了发文章,不顾科学伦理呢?就像贺建奎那样?根据武汉病毒所抢注专利的事情,也不无可能。

2、文章说, ”网络上还一些有实验动物泄漏的猜测,有人甚至把自己实验室及其它实验室动物管理不善的“经验”直接套在石正丽团队上。“。这个逻辑也奇怪:其它实验室管理不善,固然不能说明石老师的实验室管理不规范,也不能说明她的实验室管理非常规范。

3、文章说,”有生物学实验背景的人都知道,对于高致病性的病毒,并不是所有生物学实验室都可以操作。例如前述论文的嵌合病毒实验即是在生物安全4级实验室(P4)完成的。“此处有个问题是,石老师,还有张永振老师实验室在全国搜罗病毒标本的时候,都是在BSL-2/3/4哪个环境下进行采样、病毒鉴定的?有没有可能对一个蝙蝠病毒,在哺乳动物例如猴子上进行了适应(在ABSL-4进行?)实验完成后,实验动物是如何处理的?在哪里处理的?

4、文章说,”RaTG13 是石正丽他们几年前在云南省的蝙蝠中检测到的,但他们在此之前并没有 RaTG13 的活病毒和全序列。于是他们从保存的 RNA 样品里测了 RaTG13 的全序列,发现 RaTG13 和 nCoV-2019 的全基因组序列有 96.2%的同源性,共有近 1100 个碱基的差异。“

那就更令人诧异了。武汉的蝙蝠里有没有检测到这个病毒?是否以这个病毒为骨架,在哺乳动物进行了适应?在实验室内进行实验,进化的速度比自然界进化更快。

千头万绪,回到一个问题:云南的蝙蝠是怎样到武汉传播病毒的?

提出这些疑问,只是为了澄清。石老师和张老师的工作是非常有意义的,对于快速锁定新发传染病的源头和病毒学的基础研究,都是非常有意义。希望真相能早点揭开,还科研人员一个清白。此外,武汉P4实验室最好搬迁至郊外,以杜绝任何泄露的可能性。

Xnip2020-02-05_16-02-41.png

 

Guidelines for the Research Proposal

A research proposal is intended to convince the reviewers in the selection committee that you have a worthwhile research project and that you have the competence and the work-plan to complete it. Generally, a research proposal should contain all the key elements involved in the research process and include sufficient information for the readers to evaluate the proposed study.

Regardless of your research area and the methodology you choose, all research proposals must address the following:

1. What you plan to accomplish in the time you have.

2. Why you want to do it (potential contributions; relation to your short- or long-term research plans e.g., article or paper).

3. How you are going to do it (specific methodology, theoretical approach, type of archives, and contacts on the ground if relevant).

The proposal should be 600-700 words long. It should have sufficient information to convince the committee’s readers that you have an important or relevant research idea, that you have a good grasp of the relevant literature and the major issues, and that your methodology is sound. Please keep in mind that the readers might not be specialists in your field.

The quality of your research proposal depends not only on the quality of your proposed project, but also on the quality of your proposal writing.

Letters of Recommendation from Faculty

Please provide specific information about the applicant based on your first-hand knowledge, such as:

§ Examples of what the applicant has done (e.g., if the student wrote a brilliant paper, mention its topic and why it stood out).

• Merits of the proposed research project — background and rationale, research questions, methodology, plan of work and time schedule, short bibliography.

§ Positive impact the fellowship would have on the student’s short- or long-term specific research goals (article, paper) and overall educational trajectory.

Top Ten style checks for PhDs

photo_2019-12-24 12.54.25.jpeg

Style issues for writing creative non-fiction at a research level are rather different from the rules or guidance for fiction writers. As in many professional tasks, having a basic checklist can often help you develop your own practice. Here are some possible kernel questions that may help.

1.How many words are there in your paragraphs? — Aim for around 150 to 200 words average. Never have paragraphs below 50 words [this makes your text look bitty and fragmented], or above c.250 to 300 words [readers will get lost]

2. Do your paragraphs follow a ‘topic/ body/ tokens/ wrap’ structure, like this?

First (topic) sentence — Clearly signposts the topic of the paragraph
Body (middle) of the paragraph — Sets out argument and gives detailed exegesis.
Tokens — handle evidence, examples, and supplementary elucidation supporting the main argument. Be careful, they can become digresive.
Last (wrap) sentence — Sums up the paragraph conclusion and signals the implication of findings. (Tip: sometimes the Wrap sentence gets displaced, so that it appears as the first sentence of the next paragraph, which then mis-signals what the next paragraph is about).

3. If not what is the structure? How easy or hard is it for readers to ‘glean’ what a paragraph is about on a quick view?

4. How long are your sentences? How long are the outlier (smallest and largest) sentences? [Check the ‘Tools’ menu in Word here] — Aim for c. 20 words as an average. Is there a decent variety of sentence lengths and structures? Or is your writing unvaried and repetitive-looking?

5. Are you using active verbs with real subjects?[good] Or passive verbs, whose subjects are abstractions, reifications or anthromorphized concepts? [bad] Word and other equivalents will identify every passive formulation in the Spellchecker facility — go through and change them all over.

6. In each sentence do you keep the subject, verb, and object (SVO) close together and clearly linked? Are the qualifying clauses in your sentences placed at the beginning or end of sentences [good]? Or in the middle, between SVO components [bad]?

7. Do your sentences generally have a Link/Frame/Deliver sequence — or some other pattern? Do you have some variety in your sentence lengths and structures?

8. How much jargon do you use? How many multi-syllabic words are there? How high would you score on the ‘fog index’? Do you keep acronyms to a minimum and explain well any that you do use? Are you minimizing on the use of capital letters, bold or italics (they all generally make your text less readable)?

9. Stand back and ask — Is this text attractive, involving, varied and interesting? How could it become more so?

10. Apply the BBC test. Does a paragraph or sentence

Build your argument, advance readers’ understanding, strike the right tone and reach the right level? — Keep this text intact
Blur your argument, perhaps repeating material, over-analysing already clear points, or waffling with no clear purpose? — Assess the usefulness of such text critically. Not all ‘blur’ materials or slack should be cut out if they help readers. But be skeptical.
Corrode the thesis, creating a liability by including material that is wrong, too crude, or is out of scope or irrelevant to the main argument at this point? — Always either cut out the text concerned; or radically upgrade it so that it is no longer corrosive.
To follow up these ideas in more detail see my book: Patrick Dunleavy, ‘Authoring a PhD’ (Palgrave, 2003) or the Kindle edition, where Chapter 5 covers ‘Writing clearly’ and Chapter 6 ‘Developing as a Writer’.

There is also very useful advice on Rachael Cayley’s blog Explorations of Style.

Illumina Sequencing (for Dummies) -An overview on how our samples are sequenced.

A primer for Illumina sequencing

kscbioinformatics

For the past year (or so), I have been really struggling to understand the rudiments of how Illumina sequencing works, especially with the concept of “paired ends”. I needed a simple, clear explanation of the “for Dummies” variety (I love those books!). I have struggled with the variety of sources out there that describe Illumina sequencing, none of which seem to be exactly how the samples in my lab are sequenced. So here’s my version of an explanation. I think I just may finally be cracking this one conceptually…(and I made a set of video lectures about this too, audio isn’t great so consider them beta but “up”).

First, our samples are sequenced (at the Hubbard Genome Center of UNH) on an Illumina HiSeq 2500 machine. We have 250 bp Paired End (PE) reads done, and our libraries are made by size selecting for fragments not smaller than 350 bp…

View original post 1,442 剩余字数

靶向另式剪接的反义寡核苷酸设计

Considering that there are approximately 30,000 human genes and that up to 60% are alternatively spliced, this new antisense approach may have far-reaching implications in the treatment of a variety of diseases. Oligonucleotides can be used to silence mutations that cause aberrant splicing, thus restoring correct splicing and function of the defective gene. This is important since close to 50% of genetic disorders are caused by mutations that cause defects in pre-mRNA splicing. Thus, targeting splicing with antisense oligonucleotides significantly extends the clinical potential of these compounds.

Examples of Splice Modulating ASO Drugs

In December 2016, Ionis Pharmaceuticals announced that the U.S. Food and Drug Administration (FDA) had approved nusinersen for the treatment of spinal muscular atrophy (SMA) in pediatric and adult patients. SMA is a leading genetic cause of death in infants and toddlers, marked by progressive and debilitating muscle weakness. According to Chiriboga et al., nusinersen is a 2’-O-(2-methoxyethyl) (MOE) phosphorothioate (PS)-modified ASO designed to alter splicing of SMN2 mRNA and increase the amount of functional SMN protein produced, thus compensating for the genetic defect in the SMN1 gene.

In December 2018, Sarepta Therapeutics announced that it had completed the submission of a New Drug Application (NDA) seeking accelerated approval for golodirsen, a phosphordiamidate morpholino oligomer (PMO, depicted here) for treatment of patients with Duchenne muscular dystrophy (DMD), who have genetic mutations subject to skipping exon 53 of the Duchenne gene. Duchenne is a fatal genetic neuromuscular disorder affecting an estimated one in approximately every 3,500 – 5,000 males born, worldwide.

In addition, the announcement stated that Sarepta’s eteplirsen PMO for DMD in patients with a confirmed mutation of the DMD gene amenable to exon 51 skipping, had also been approved under accelerated approval based on the increased dystrophin levels in skeletal muscle observed in some patients treated with this drug. However, a clinical benefit of eteplirsen has not been established, meaning that continued approval for this indication may be contingent upon verification of a clinical benefit in confirmatory trials.

In December 2018, ProQR Therapeutics announced a publication in Nature Medicine regarding the results of a clinical trial investigating its splice modulating ASO, QR-110, for the treatment of Leber’s congenital amaurosis 10 (LCA10), a rare but severe form of childhood blindness. LCA10 is an inherited retinal dystrophy associated with mutations in the CEP290 gene. QR-110 is a single-stranded, fully PS- and 2′-O-methyl (2’-OMe)-modified RNA oligonucleotide designed to correct the splicing defect resulting from the CEP290 c.2991+1655A>G mutation, which is the underlying cause of LCA10. QR-110 is designed to restore normal (wild-type) CEP290 mRNA, leading to the production of normal CEP290 protein. QR-110 is intended to be administered through intravitreal injections in the eye, and it has been granted orphan drug designation in the United States and the European Union, receiving fast-track designation by the FDA.

Systematic Development of Splice Modulating ASOs

Despite the proven utility of splice modulating ASOs and increasing interest in this mechanistic class of nucleic acids, published information on the design of these compounds is scarce. Wilton and collaborators have addressed this issue in a September 2019 publication, briefly summarized below. Readers interested in details should consult the full paper at this link.

According to these researchers, splice modulating ASOs are designed to hybridize to elements within or flanking an exon, thereby influencing its recognition by the spliceosome (depicted here) so that the exon is preferentially retained or excised from the mature mRNA, as required. They add that redirection of splicing is presumably a consequence of the ASO preventing positive (enhancer) or negative (silencer) splicing factors from recognizing enhancer or silencer elements in the pre-mRNA transcript. Steric hindrance by the ASO at these sites alters the recognition of normal splice sites by the splicing machinery, leading to alternative selection of exons or intronic sequences in the targeted transcript.

Wilton and collaborators state that several Web-based tools have facilitated the prediction of potential splice factor motifs in any given sequence, and that bioinformatics can contribute to the design of splice switching ASOs. While it is relatively straightforward to target AOs to predicted enhancer or silencer motifs, or to confirmed splice donor or acceptor sites, they cite published examples on how this approach does not consistently yield effective splice altering ASO sequences. In their opinion, “identifying target domains within a pre-mRNA that influence splicing and then refining ASO design through micro-walking [exemplified here] must be done empirically.”

intron-1024x299.png

RT-PCR analysis of ITGA4 transcripts demonstrating refinement of splice switching ASOs targeting ITGA4 exon 3. ASOs tested in a first screen are indicated by red lines and the micro-walked ASOs tested in a second screen are represented by blue lines. Nucleotide positions are -/+ numbers and levels of exon skipping after transfection at 100 nM are % values. Taken from Aung-Htut et al. Int. J. Mol. Sci. 2019, 20(20), 5030 and free to use.

To date, Wilton and collaborators have screened over 5,000 ASOs as potential splice modulating agents directed at numerous gene transcripts linked to genetic diseases that may be potentially amenable to a splice intervention therapy. In addition, they have explored non-productive splicing to downregulate expression of selected gene transcripts. This was achieved through induction of non-functional isoforms by either the excision of exons encoding crucial functional domains, or disruption of the reading frame. Consequently, these researchers have developed the following general guidelines, which are efficient and effective in developing biologically active splice switching ASOs:

1) The pre-mRNA sequence is interrogated by one or more in silico prediction programs to identify potential splice enhancer or silencer motifs.
2) Antisense oligonucleotides, typically 20- to 25-mers, are designed to anneal to the target motifs and are synthesized with 2′-OMe nucleobases and PS linkages throughout. (Note: 2’-OMe/PS-modified ASOs are available from TriLink BioTechnologies)
The test compounds are complexed with cationic liposome preparations and transfected into cells.
3) After incubation, total RNA is extracted and the target transcript is amplified using RT-PCR to assess differences in pre-mRNA processing, with and without ASO treatment.
4) Oligomers shown to induce the desired changes in pre-mRNA processing are further refined by micro-walking around the annealing site and/or altering AO length.
5) Transfection studies over a range of concentrations are performed to identify compound(s) that modify splicing in a dose-dependent manner, and at the lowest concentration.

Comments on These Guidelines

According to Wilton and collaborators, the use of negative ASO control sequences, whether they be random, scrambled, or unrelated, is essential to confirm specific target modification. Establishing target specificity is particularly crucial in situations where gene downregulation is the desired outcome. However, in many cases of splice switching (either exon skipping, exon retention, or intron retention), the presence of a novel transcript is proof of the anticipated antisense mechanism.

The researchers further note that, depending on the gene and targeted exon, up to two-out-of-three ASOs designed in a first pass can induce some level of exon skipping. However, targeting certain motifs noticeably results in more efficient exon skipping than others, and when developing any ASO for clinical use, the most appropriate compound will be one that induces robust splice switching at a low concentration.

The use of a positive transfection control ASO is recommended for each transfection experiment, as this can control for transfection efficiencies across different experiments. It is also important to note that cell confluency, passage number, and other culture conditions can substantially influence transfection efficiency in primary cells and may lead to variations in ASO efficacy between biological replicates.

In some cases, individual ASOs were ineffective at modifying exon selection, even after transfection at high concentrations. Wilton and collaborators state that they have frequently found that selective ASO “cocktails”, which include two or more ASOs used in conjunction for a given exon target, mediate exon skipping in a synergistic manner, while each ASO transfected alone is ineffective. Conversely, they have also observed a marked decrease in exon skipping efficiency when two highly effective AOs are combined.

Wilton et al. also recommend confirming the identity of putative exon-skipped products by direct DNA sequencing, as nearby cryptic splice sites may be activated, resulting in the generation of amplicons of similar length to the expected product. A difference of only a few bases in length can be difficult to resolve on an agarose gel, and such differences would be impossible to detect in longer RT-PCR products representing multiple exons.

Upon identification of amenable sites in the pre-mRNA that induce the desired splice modulation, ASOs can be further optimized by micro-walking and shifting the ASO annealing sites in either direction to ensure the most amenable splice motifs have been targeted, as was depicted and exemplified above. If considered necessary and of particular relevance, further micro-walking can be undertaken by moving the lead ASO candidate target sequence a few nucleotides in either the 5′ or 3′ direction. Finally, systematic truncation of a lead ASO can provide the shortest ASO that retains the desired level of potency.

Concluding Remarks

This blog started off by noting the pioneering work of Ryszard Kole, which was first reviewed by Kole et al. in an article titled RNA modulation, repair and remodeling by splice switching oligonucleotides published in Acta Biochimica Polonica in 2004. This initial review, published in a relatively obscure Polish journal, is freely downloadable at this link for readers interested in learning more about the “early days” of this exciting field. The introduction provides the following historical statement that’s worth mentioning:

The cited seminal paper in 1993 in PNAS by Dominski (a postdoctoral student) and Kole is also freely available at this link. The aforementioned review by Kole et al., depicted as the single data point for 2004 in the graph below, has been succeeded by a rapidly increasing number of annual publications in PubMed.Given this trend, and the clinical development of splice modulating ASOs discussed in this blog, it seems likely that future successes will follow for this novel mechanistic class of modified oligonucleotides as therapeutic agents for genetic diseases.

pubmed-640x385.png

THIS IS ADAPTED FROM: http://zon.trilinkbiotech.com/2019/11/26/splice-modulating-antisense-oligonucleotides/

如何制作符合高标准的文章插图?

Preventing misguided creations

The clearest way to visually depict an idea must always be carefully considered. Rather than repurposing existing plots and schematics, Review figures should craftily organize, summarize, and redraw the information in a meaningful way. This is perhaps the best opportunity for creativity; again, everyone remembers Frankenstein’s monster.

So, let’s assume we’ve decided a paneled figure is best for depicting emerging MOF applications. Now it’s time to sew the panels together and infuse the figure with life. However, careful steps must be taken to avoid transforming the paneled figure into the dreaded Frankenfigure. Here is some general advice for creating a readily adoptable figure:

Ensure a clear layout
Upon inspection, it should be immediately obvious how to interpret a figure. Clear and logical visual flow is essential for reader comprehension (e.g., top-to-bottom and left-to-right). Each panel should be visually and/or spatially separated to clearly delineate topics. Of course, it should be clear as to what information belongs with each panel (see Frankenfigures 1C and 1E).

Contextualize panels
Repurposed figures lack the context provided in the original article because the remainder of the article is discarded. Careful subtitles, figure and symbol labels, descriptors, and captions can resurrect the necessary context. For example, readers would certainly benefit from a description of the molecular structure and red circles in Frankenfigure 1A or added scale bars in Frankenfigure 1E. Don’t forget, readers will have difficulty understanding a disembodied figure without help.

Pay attention to details
Details matter. They really do. The figure should be consistent in all possible ways to increase the likelihood of reader comprehension. At a minimum, the figure should display coherent legible fonts, panel background colors, image quality, and relative panel sizes. Even if panels come from multiple sources, it shouldn’t be obvious to the reader.

Edit the figure
It is easy to want to keep adding more elements to the figure; however, it is important that each additional component be critical to teaching the desired concept. Remove any figure components that stray from the main concept—not all the article’s complexities must be included in a single figure!

Utilize figure captions
The reader should have the necessary information to fully interpret the figure from simply viewing the image and associated caption. And although Frankenstein’s monster lacked a name, this doesn’t mean your figure has to! Short, descriptive figure titles can be used in the beginning of the caption to add context for the reader.

How to prepare creative and effective figures?

Class 1: Data collection and replotting 

One interesting and important class of Review figures consists of data acquired from a variety of sources that are compiled into a single figure in an insightful fashion. This type of figure allows readers to draw new conclusions, often with bigger-picture takeaways, from data that otherwise exists scattered throughout the literature. Figures 1 and 2 illustrate this idea. This format is a great way to present numerical data for direct comparison, and is, in many cases, superior to including a variety of plots from many literature sources. A clear advantage is that these figures only display data that best supports the authors’ main message rather than including extraneous information likely present in pre-existing figures. Additionally, articles existing in the literature often use different scales, units, and metrics, so replotting the data affords both the author and readers a chance to compare seemingly disparate data sets.  

Both Figures 1 and 2 are original figures that compile data from an assortment of references. This means that authors can carefully control the color scheme, size, and font to be clear and uniform. Importantly, all axes are clearly labeled, each figure panel is clearly distinguishable, and there are only a few panels. Figure 2 is interesting in that (B) is a legend/key for (A). This design allows the figure to convey a great deal of information with the plot in panel A being overly cluttered. 

Figure 1

Figure 1. The authors describe metal-insulator transitions in correlated oxides for solid-state neuromorphic computing. The details in (A–D) are not important. However, in (E), the authors created a plot change in resistivity/conductivity at the metal-insulator transition temperature, TC, for these materials. The vertical dashed line at 400 K labels the threshold imperative for computing which allows the reader to effectively view promising material candidates for this application. 

Figure 2

Figure 2. The authors of this article defined a new figure of merit for biofabrication, RTM, and plotted various technologies according to their calculated or estimated RTM. This let the authors compare different technologies in a novel, objective manner. 

Class 2: Schematic illustrations 

Another exciting class of Review figures is schematic diagrams. Schematics are valuable figure designs in most article types because they succinctly convey to the reader complex processes that would otherwise be difficult to visualize from a short description alone. Figure 3 demonstrates this idea for the processing of perovskite solar modules. The artistic rendering of the manufacturing process captures the reader’s attention but is still straightforward to understand. This figure is particularly illustrative because it is multi-scale, showing both the sequential processing as well as the various components added to the module at each step. Rather than appearing as a many-paneled figure, the schematic stands on its own with clear visual flow in a clockwise (and bottom-up) manner. 

Figure 3

Figure 3. This is a schematic that simultaneously depicts the layers of the perovskite solar modules as well as the processing steps. TCO is the transparent conductive oxide, ETL is the electron transport layer, and HTL is the hole transport layer. P1, P2, and P3 are three scribing steps 

Class 3: Conceptual diagrams 

A final general class of Review figures is conceptual diagrams, which are a subclass of schematic figures that organize concepts. This type of figure can be used in all article formats but are most often present in Reviews. Of course, the information contained in a conceptual diagram could be explained within the main text of the article. However, the figure presents the information in a way that the reader can quickly digest. Conceptual diagrams allow the author to emphasize key article points in a visual format. Figure 4 provides an excellent example. Here, the figure organizes the strategies and challenges for designing battery components in lithium-air batteries. The success of Figure 4 stems from its simplicity, with succinct text and visually organized ideas that allows the reader to easily understand their connectivity. Importantly, the amount of text in the figure is limited and the article itself is used to elaborate on the details and concepts. 

Figure 4

Figure 4. The is a conceptual diagram that organizes the issues facing Li air batteries as well as the material design strategies. 

Become an artist 

These types of Review figures are far from exhaustive. However, we chose these general classes and specific examples because we, as readers, find them to be particularly insightful and enlightening. As these examples demonstrate, standout Review figures stem from a unique and original twist on a concept. By starting from scratch, figures are designed to convey the main article message in a neat, uniform, and tidy way but without the extraneous components 

RNA-Seq: 10年回顾和展望

摘要

RNA测序(RNA-seq)在过往十年里逐渐成为全转录组水平分析差异基因表达和研究mRNA差异剪接必不可少的工具。随着二代测序技术 (NGS)的发展,RNA-seq的应用也越来越广。现已经可以应用于很多RNA层面的研究,比如单细胞基因表达、RNA翻译(translatome)和RNA结构组(structurome结构组学)。新的有意思的应用,如空间转录组学(spatialomics)也在积极研究中。通过结合新兴的三代长读长long-read和direct RNA-seq技术,以及更好的计算分析工具,RNA-seq帮助大家对RNA生物学的理解会越来越全面:从转录本在何时何地转录到RNA折叠以及分子互作发挥功能等。

前言

RNA测序(RNA-seq)自诞生起就应用于分子生物学,帮助理解各个层面的基因功能。现在的RNA-seq更常用于分析差异基因(DGE, differential gene expression),而从得到差异基因表达矩阵,该标准工作流程的基本分析步骤一直是没有太大变化:

* 始于湿实验,提取RNA,富集mRNA或消除rRNA,合成cDNA和构建测序文库。
* 然后在高通量平台(通常是Illumina)上进行测序,每个样本测序reads深度为10-30 Million reads。
* 最后一步是计算:比对/拼装测序reads到转录本,计数与转录本比对上的reads数定量,样本间过滤和标准化,样本组间基因/转录本统计差异分析。

早期的RNA-seq实验从细胞群(如来源于某个组织或器官的细胞)中得到DGE数据,并可以应用于很多物种,如玉米(Zea mays),拟南芥(Arabiodopsis thaliana),酿酒酵母(Saccharomyces cerevisae),鼠(Mus musculus)和人(Homo sapiens)。虽然RNA-seq这个词通常包含很多不同的RNA相关的方法或生物应用,但DGE分析始终是它的主要应用(表1),并且是DGE研究的常规工具。

RNA-seq的广泛应用促进了对许多生物层面的理解,如揭示了mRNA剪接的复杂性、非编码RNA和增强子RNA调控基因表达的机制。RNA-seq的发展和进步一直离不开技术发展的支持(湿实验方面和计算分析方面),且与先前的基于基因芯片的技术比起来,获得的信息更多、偏好性更小。到目前为止,已从标准的RNA-seq流程中衍生出多达100种不同的应用。大部分应用都是基于Illumina short-read测序,但最近基于long-read RNA-seq和direct RNA sequencing (dRNA-seq)的方法可以帮助解决Illumina short-read技术处理不了的问题。

本文中,我们先熟悉’baseline’流程,用short-read RNA-seq技术分析DGE。先描述短读长测序的文库构建过程、实验设计注意事项和计算分析流程,探究其应用如此广泛的原因。然后描述单细胞转录组和空间转录组的发展和应用。我们会举例说明RNA-seq在RNA生物学关键研究中的应用,包括转录和翻译的动力学分析,RNA结构,RNA-RNA和RNA-蛋白质间相互作用等。最后我们小小地展望一下RNA-seq的未来,如单细胞和空间转录组是否也会是以后的常规分析,在什么情况下long reads会替代short reads RNA-seq。不过篇幅有限,本文对RNA-seq分析还是有照顾不到的地方,比如典型的有非编码转录组,原核转录组和表观转录组。

Xnip2019-11-08_12-07-30.png
图1A:三种RNA测序方式的建库方法概览:short-read测序(黑色),long-read cDNA测序(绿色)和long-read direct RNA-seq(蓝色)。根据不同的应用目的,文库构建的复杂性和偏好性不同。short-read和long-read cDNA的建库方案在很多步骤是一样的,比如在所有建库方案中接头连接是共有的。三种方法都会受到样本质量和文库构建上下游的计算问题影响。

Xnip2019-11-08_12-09-51.png

图1B: 三种主要测序技术的比较。
Illumina workflow(左):建库之后,单独的cDNA分子在流动槽中构建测序簇,使用3’阻断的荧光标记的核苷酸进行边合成边测序。在每一轮测序中,高速摄像机拍照捕获当前激发的荧光,来判断当前是哪个核苷酸合成进来,测序长度在50-500 bp。
The Pacific Biosciences workflow(中):建库之后,每个分子与固定在纳米孔底部的聚合酶结合。然后是边合成边测序,测序长度可以高达50 kb。
The Oxford Nanopore workflow(右):建库后,将单个分子加载到流动槽中,在接头连接过程中加上的分子马达会与生物纳米孔结合。马达蛋白控制RNA链穿过生物纳米孔,引起电流变化,从而推测出经过的碱基序列,生成的测序reads大小为1-10 kb。

Xnip2019-11-08_12-10-58.png
图1C:short-read,long-read和direct RNA-seq分析

人体中,超过90%的基因(gene n)会发生可变剪接,并生成至少两种不同的表达形式(转录本x,y)。相比于long-read测序可以直接测到每一种不同的转录本,从而获得更全面的信息,short-read的测序在检测转录本上受限于短reads比对的模糊性。在short-read cDNA测序中,有很多reads比对回两个不同转录本共享的外显子上导致无法确定其真实来源。跨越2个或多个外显子的Junction reads可以改善转录异构体的分析,但当两种转录异构体共享剪接断点时就无能为力了。这些问题都增加了分析和解读结果的复杂度。long-read cDNA方法能直接检测全长转录异构体,从而移除或大幅减少检测偏好,提高差异表达转录本分析的准确率。

而以上这些方法都依赖于cDNA转换,这一过程抹去了有关RNA碱基修饰的信息,而且也只能粗略估计多聚腺苷酸(poly(A))尾巴的长度,而direct RNA-seq可以直接分析全长转录本异构体、度量碱基修饰(比如N6-甲基腺苷(M6A))和检测poly(A)尾巴长度。

RNA-seq技术的进步

在NCBI Short Read Archive (SRA)数据共享平台中多于95%的数据来自于Illumina short-read测序技术(表2)。目前几乎所有已发布的mRNA-seq数据都是short-read测序所得,所以我们认为这是RNA-seq技术的常规操作,接下来讨论它的主要流程和限制。不过在转录异构体检测的研究(图1;表1)方面,不断进步的long-read cDNA测序和dRNA-seq技术将向short-read测序技术的主导地位发起挑战。

Xnip2019-11-08_12-13-08.png

short-read cDNA测序用于差异基因分析

short-read测序是检测和定量转录组范围基因表达的最常见方式,部分原因是因为它比表达芯片更便宜、更易于应用,但更主要的是它可以获得全转录组水平高质量的表达数据。采用Illumina的short-read测序做DGE分析的核心步骤包括RNA提取,cDNA合成,接头连接,PCR扩增,测序和数据分析(图一)。由于mRNA片段化和基于beads的文库纯化过程中偏好150-200 bp的片段,导致这个方案最后获得的cDNA片段都在200 bp以下。每个样本平均测20-30 million reads,对每个基因或转录本进行定量,再统计分析差异基因(参考RNA-seq数据分析部分)。short-read RNA-seq结果很稳定,对RNA-seq的short-read测序技术多次测试比较发现,其平台内和平台间的相关性都很好。然而在样本准备和计算分析阶段有一些步骤也会引入偏好性。这些限制会影响特定生物问题的解释,比如正确地识别和定量一个基因的多个转录异构体。这一局限与研究特别长或特别多变的转录异构体尤其相关。如人的转录组中,50%的转录本长度大于2500 bp,转录本长度范围在186 bp到109 kb。尽管short-read RNA-seq 可以对更长的转录本进行细致的分析,但相应的方法很难高通量化用于全转录组范围的分析。其它的偏好性和限制可能来自于RNA-seq数据分析的计算方法,比如怎么处理在基因组上有多个匹配位置的序列。一个新的称为合成长读长测序 (synthetic long reads)可以进行全长mRNA测序和解决一部分存在的问题。在short-read RNA-seq建库前利用唯一分子标识符(UMI)标记cDNA分子,从而解决短读长问题做到测序全长mRNA。基于这个技术可以对长达4 kb的转录本异构体进行鉴定和定量。从根本上解决short-cDNA测序固有限制的最有效的方法还是long-read cDNA测序和dRNA-seq方法。

long-read cDNA 测序

尽管Illumina是目前主流的RNA-seq平台,但Pacific Biosciences(PacBio)和Oxford Nanopore(ONT)能在完整的RNA分子反转录为cDNA后进行单分子长读长测序。因为消除了short RNA-seq reads需要的组装步骤,可以解决short reads测序相关的一些问题。例如:序列比对的模糊性降低,可以鉴定更长的转录本,这些有助于更好地检测转录异构体的多样性。同时还可以降低许多short-read RNA-seq计算工具引入的剪接位点检测的高假阳性率。

基于PacBio技术的Iso-Seq能够检测长达15 kb的全长转录本cDNA reads,这有助于发现大量先前未注释的转录本,并通过全长测序确认了早期基于跨物种同源序列的基因预测结果。在标准的Iso-Seq实验流程中,模板置换逆转录酶可以将高质量RNA转化为用来测序的全长cDNA。然后将得到的cDNA进行PCR扩增,并构建PacBio单分子实时(single-molecule, real-time,SMRT)文库。因为短转录本可以很快地扩散到测序芯片的活性表面造成一定的测序偏好,建议选择1至4 kb长度的转录本一起测序,以保证这一长度范围的长短转录本有同等几率进行测序。同时PacBio测序对模板量需求很大,要求进行大体积PCR,需要优化反应体系降低过扩增的影响。PCR末端修复和PacBio SMRT 接头连接后,就可以进行long-read测序了;通过调整测序芯片的上样条件可以进一步控制测序片段的大小选择偏好。

ONT cDNA测序也可以测序全长转录本,而且适用于单细胞测序。同样使用模板置换逆转录来制备全长cDNA,在加接头制备测序文库之前,可以自己决定是否进行PCR扩增。Direct cDNA测序可消除PCR偏差,获得的测序结果质量更高 ;PCR扩增的cDNA文库的测序产出(测序获得的reads数)更高,适用于样本中RNA含量较少的情况。而目前还未在ONT cDNA测序中发现PacBio测序存在的转录本长短选择偏好。

这些long-read cDNA方法都受模板置换逆转录酶限制。这个酶可以把全长和截断的RNA都转换成cDNA。反转录酶只将5’-capped mRNA转换成cDNA,这样就降低了由于RNA降解、RNA断裂导致的转录本截断生成的cDNA和不完整的cDNA合成,从而提高数据质量。但是这些逆转录酶对ONT平台的测序reads读长有反作用。

Long-read direct RNA 测序

正如上面所讨论的,long-read和baseline short-read 平台一样,都需要在测序之前将mRNA转化成cDNA。近期Oxford Nanopore展示他们的纳米孔测序技术能直接测序RNA,也就是说,建库过程中没有修复、cDNA合成、PCR扩增这些过程,移除了这些操作过程的偏好并且保留了RNA上的表观修饰信息,这一技术也称为dRNA-seq。直接从RNA建库需要两步接头连接。首先,带有oligo(dT)悬臂的duplex adaptor与mRNA的PolyA尾巴退火连接。后续是一个可选的逆转录操作,用于提高测序通量(一般推荐做)。第二个连接操作就是添加连有分子马达的测序接头用于后续测序。随后文库加载入MinION,启动3ʹpoly(A)尾巴向5ʹcap端的RNA测序。早期研究表明,dRNA-seq的测序长度在1000 bp左右,最大测序长度超过10 kb。与短读长测序相比,长读长测序可以改善转录异构体的检测,估计PolyA尾巴的长度进行选择性多腺苷酸化分析。Nanopolish-polya工具可以分析纳米孔测序得到的数据,计算基因间或转录本间的poly(A)尾的长度。结果表明内含子保留的转录本相比于完全剪切的转录本具有稍长的PolyA尾巴。虽然dRNA-seq还处于起步阶段,但是其能直接检测RNA碱基修饰的潜力有望在表观转录组领域促进更新的发现。

长读长测序与短读长测序技术的比较

虽然长读长测序技术在转录本分析方面比短读长测序技术有一些明显的优势,但是也存在一些局限。跟成熟的短读长技术平台相比,长读长测序技术的测序通量低很多,错误率更高。而长读长测序技术的主要优势即能测序更多的独立转录本全长,依赖于高质量的RNA文库。这些局限会影响那些特别依赖长读长测序实验的灵敏性和特异性。

当前长读长测序方法的主要局限就是其通量低。在Illumina平台上,一个RUN可以生成10^9-10^10条reads,而PacBio和ONT平台上,一个RNA-seq RUN只能产生10^6-10^7 reads。这种低通量限制了应用长读长测序的项目的大小(实验样本的数目),并降低了差异基因表达检测的灵敏性。当然也不是所有的应用都需要很高的测序深度。比如如果研究者关注的是转录异构体的发现和鉴定,测序长度比测序深度更重要。测序1百万个PacBio环形一致性序列 (circular consensus-sequencing, CCS) 可以保证长度大于1 kb的高表达基因测通,ONT测序技术也是如此。因此,测序深度主要影响低中表达的基因。低通量的局限性在研究功能基因组进行大规模差异基因分析时会更明显。为了获得足够的以保证转录组表达变化检测的准确性,需要对多个样品组的多个生物学重复同时进行测序分析。在这些应用上,长读长技术不太可能取代短读长技术,除非它们的通量能提高2个数量级。随着全长RNA-seq reads数目增加,转录本检测的灵敏度将会达到Illumina平台的水平,但有着更高的特异性。通过将Illumina 的短读长RNA-Seq与PacBio的长读长Iso-Seq结合 (并且可能还与ONT方法结合),在保留转录本定量质量的基础上,可以增加RefSeq注释的全长转录异构体检测的数量、灵敏性和特异性。尽管当前长读长RNA-seq方法实验成本更高,但它们可以检测短读长方法所遗漏的转录异构体,尤其是那些难以测序但与临床相关的区域,例如高度多态的人类主要组织相容性复合体MHC或雄激素受体。

长读长测序平台的第二个主要限制是其高错误率,比成熟的Illumina测序仪要高出一到两个数量级。长读长测序平台上生成的数据还包含更多的插入-缺失错误。如果是做突变位点检测这些错误率/错误形式会影响很大,但是对转录组分析影响并不是太大,只要能区分转录本和转录异构体即可。如果是应用于对错误率敏感的项目,也有一些办法进行补救。PacBio SMRT测序平台出现的典型测序错误是随机错误,可以通过增加测序深度来进行CCS序列矫正解决。在测序过程中,cDNA的长度是人为选择控制的,连接接头后形成环形模板,每个分子可以被测序多次,从而产生长度范围是10-60 kb的连续长序列,里面包含了原始cDNA的多份拷贝。这些长序列经过计算拆分成为单个cDNA子读长 (subreads),并比对在一起互相校正获得一致性序列。插入的cDNA分子测序到的次数越多,校正后错误率越低;研究表明CCS可以将错误率降低到与短读长相当甚至更低的水平。但是,把平台的测序能力用于读取相同的分子更加加剧了其测序通量低的问题,更少的独立转录本会被测到。

长读长RNA-seq方法的敏感性还受到其他几个因素的影响。首先,用于建库的RNA分子需要是全长转录本,但由于RNA提取、分离过程中会导致RNA断裂或实验过程中RNA降解,使得理想状态并非总能实现。这种情况在短读长RNA-seq中也会导致可控的3ʹ端偏好,但对定位于应用长读长的RNA-seq分析全长转录组的研究者来说,即使是低水平的RNA降解,效果也会受限。因此,相关研究者需要在RNA提取后进行严格质控。其次,中位读长长度也会受到文库制备中的技术问题与技术偏好的限制,例如cDNA合成过程中的截断或降解的mRNA反转录成的降解cDNA。最近研发的高效逆转录酶具有更好的链特异性和更均一的3’-5’转录本覆盖,可能会改善这一过程。虽然还没有广泛使用,但是这些高效逆转录酶也提高了对结构稳定的RNAs(如tRNAs)的覆盖检测,这是其它在基于oligo-dT和全转录组分析 (WTA) 的方法中使用的逆转录酶很难达到的效果。第三,长读长测序平台固有的偏好(如长插入文库在测序芯片上的更不容易进行测序)会降低更长转录本的覆盖率。

长读长测序 (不管是基于cDNA还是RNA) 因为读长长,解决了短读长测序方法用于转录异构体分析的短板。长读长方法可以获得从Poly(A)尾巴到5ʹ帽子的全长转录本读长。因此,这些方法对转录本和转录异构体的分析不再依赖于短序列重构转录本或推测转录本的存在;而是每个测序到的reads都代表它所来源的RNA分子。基于全长cDNA测序或dRNA-seq的差异基因分析依赖于PacBio和ONT技术的通量提高。长读长RNA-seq与深度短读长RNA-seq技术结合的思路正在迅速被研究者用于更全面的分析,这非常类似于基因组组装所采取的混合组装方式。随着研究的深入,长读长和dRNA-seq方法将会揭示:即便在研究的很透彻的物种中,已经鉴定出的基因和转录本可能也只是冰山一角。随着方法的成熟和测序通量的增加,基于长读长的差异转录本分析将会成为常规研究。基于组装的长读长RNA-seq (synthetic long-read RNA-seq)或其它技术的发展对这个领域的影响还有待观察。从目前来看,Illumina短读长RNA-seq依然占据了该领域的主导地位。后面我们只会集中讨论短读长测序。

改良RNA-seq建库方法

RNA-seq方法源于早期的表达序列标签 (expressed-sequence tag)和表达芯片技术,最初用于分析多聚腺苷酸化的转录本。但是,二代测序的应用发现了这些方法的局限性,虽然在表达芯片中并不明显。因此,在RNA-seq技术首次发表后不久,许多文库制备方法的改进相继推出。例如,片段化RNA而非cDNA可以降低3’/5’偏好,链特异性文库制备方法能够更好的区分正链和负链转录的基因,这些改进都能获得更准确的转录本丰度估计。片段化RNA和构建链特异性文库很快成了大部分RNA-seq文库制备试剂盒的标配。这里我们简要描述了RNA-seq方法的其它改进,以便研究者可以根据特定的生物学问题或样本自身特征进行选择。这些改进包括不基于oligo-dT的RNA富集方法,特异性富集3ʹ或5ʹ末端转录本的方法,使用UMIs区分PCR duplicates的方法,以及针对降解的RNA构建文库的方法。这些方法的组合(也包括dRNA-seq和后面提到的分析其它状态的RNA的方法)允许研究者揭示由可变poly(A) (alternative poly(A), APA),或选择性启动子 (alternative promoter)和可变剪接 (alternative splicing)导致的转录组的复杂性。

Poly(A)富集的替代方法

大多数发表的RNA-seq数据都是基于oligo-dT方法富集包含poly(A)尾巴的转录本,定位于分析转录组上的蛋白质编码区 (生信宝典注:部分lncRNA也有poly(A)尾巴)。但是这种方法除了会导致3ʹ端偏好外,很多不含Poly-A尾巴的非编码RNA,例如miRNA和增强子RNA不会被测到。完全不进行选择而使用全部提取的RNA也不合适,因为这会导致高达95%的测序数据来源于rRNA。因此,研究者选择将oligo-dT富集用于mRNA-seq,移除rRNA进行全转录组测序(WTA)。短链非编码RNAs(如miRNA)既无法用oligo-dT方法富集,WTA测序中也很难覆盖,因此对其研究需要特定的分离建库方法,一般是切胶或磁珠分选后直接连接接头 (sequential RNA ligation,通常构建出来都是链特异性文库) (生信宝典注:这一点尤其要注意)。

WTA生成的RNA-seq数据包含编码和一些非编码RNA。WTA方法也适用于Poly-A尾巴与转录本其它部分分开了的降解了的样品。移除rRNA有两种方法,一种是将rRNAs从总RNA中分离出来(所谓的pull-out法),另一种是使用RNAse H酶降解rRNA。这两种方法都需要使用序列特异性和物种特异性的、能与细胞质rRNA (5S rRNA,5.8S rRNA,18S rRNA和28S rRNA)和线粒体rRNA (12S rRNA和16S rRNA)互补的寡核苷酸探针。为了简化人类、大鼠、小鼠或细菌 (16S和23S rRNA)样本的处理,上述探针混合后再加入提取的总RNA中,与其中的rRNA杂交以便下一步的清除。其它高丰度的转录本,例如珠蛋白RNA (globin)或线粒体RNA也可以按照类似的方法去除。Pull-out方法中探针是带有生物素的,然后使用链霉素包裹的磁珠从总RNA溶液中除去探针-rRNA复合物,剩余的RNA用于建库测序,试剂盒有Ribo-Zero (Illumina,USA) (生信宝典注:还是Illumina取名字霸气)和RiboMinus (Thermo Fisher,USA)。RNAse H方法使用RNAse H (NEBNext RNA depletion(NEB,USA))和RiboErase (Kapa Biossystems,USA)降解oligo-DNA:RNA复合物。最近的比较表明,在RNA质量高的前提下,这两种方法都可以将产出数据中rRNA的比例降低至20%以下。但是,研究还表示RNase H方法比pull-out法的稳定性要好。另外对应用不同试剂盒获得的数据进行差异基因分析时要注意转录本长度的偏好性的影响。作者还描述了另外一种类似于RNase H的方法,效果也不错但之前没有报道过。ZapR方法是Takara Bio的专利技术,它使用一种酶来降解RNA-seq文库中的rRNA片段。相比于oligo-dT RNA测序方法,rRNA移除建库方法的一个局限是需要更高的测序深度,主要是因为文库中还有一定的rRNA留存。

Oligo-dT和rRNA移除法都可以用于后续实验的DGE分析,研究者们通常会延续实验室一直使用的方法或最容易使用的方法。然而,对于这些方法的选择需要根据情况做一些考量,尤其是那些易降解的样本,如果采用WTA方法会检测到更多的转录本,但是其实验成本也高于oligo-dT方法。

富集RNA 3ʹ端用于Tag RNA-seq以及可变多聚腺苷酸分析 (Enriching RNA 3ʹends for Tag RNA- seq and alternative polyadenylation analysis)

标准的短读长Illumina方法应用于高质量差异基因分析时需要对每个样本测序1000万到3000万条(10M到30M条)reads。如果研究者只关注基因水平的表达,并且样本数目比较多和生物重复比较多时,或者实验样品材料受限时,建议采用3ʹtag计数。由于测序集中在转录本的3ʹ末端,需要的测序深度会降低,就可以降低成本或同时测序更多样本。富集3ʹ末端也可以用于检测由于mRNA前体上发生的选择性多聚腺苷酸化导致的单个转录本的poly(A)位点的变化。

3ʹ mRNA-seq方法中每个转录本获得一条测序片段 (tag read),通常是对其3’末端的测序。tag read的数目理论上与转录本的丰度是成正比的。标签测序法 (tag-sequencing protocols),例如QuantSeq (Lexogen, Austria)通常比标准RNA-seq实验流程更为简单。标签测序法采用随机引物或带有oligo-dT的引物进行PCR扩增分选出转录本的3’末端的同时加上接头序列,优化掉了poly(A)富集、rRNA移除和接头连接等步骤。这一方法可以在更低的测序深度条件下达到与标准RNA-seq相当的敏感性,因此可以混合更多样本同时测序。因为不需要考虑外显子连接检测 (exon junction)和基因长度归一化,这一方法的数据分析也简化了(生信宝典注:其实也是需要考虑的,转录本末端或UTR区也会存在剪接,具体取决于测序读长和特定基因的结构。不过如果使用STAR/BWA等有soft-clip机制的比对工具也可以不考虑。)。但是,3ʹ mRNA-seq方法可能会受到转录本序列相似区域 (homopolymeric region) 导致的引物结合错误进而导致扩增出错误的片段的影响;也只能进行非常有限的转录异构体分析,这会抵消这一方法因为测序深度需求低带来的高性价比,尤其是对于那些仅够一次使用的样本。

mRNAs的选择性多腺苷酸化(APA)会产生3ʹ UTR长度不等的转录异构体。对于一个特定的基因来说,这不只是多转录出几个异构体,而是3ʹUTR中存在的顺式调控元件会影响转录本自身的调控。能够研究APA的方法可以让研究者们对miRNA的调控、mRNA的稳定性和定位、以及mRNA的翻译有更多理解。APA法要求是富集转录本的3ʹ末端,从而提升检测信号和灵敏度,而前面提到的3ʹ mRNA-seq标签测序法则正合适。其它方法如多聚腺苷酸位点测序 (polyadenylation site sequencing, PAS-seq)法,首先将mRNA打断为150 bp左右的片段,然后使用带有oligo-dT的引物进行模板置换生成cDNA用于后续测序,其中的80%的测序序列来源于3ʹUTR。TAIL-seq则避免使用oligo-dT,RNA打断前,先移除rRNA,然后在转录本poly(A)尾巴连接3ʹ接头。片段化后,再加上5ʹ接头就完成了文库制备。在RNA-蛋白互作分析方法如交联免疫沉淀 (cross-linking immunoprecipitation, CLIP)测序和dRNA-seq中也能评估APA。

富集RNA 5ʹ末端用于转录起始位点鉴定 (Enriching RNA 5ʹends for transcription start- site mapping)

富集5ʹ端RNA (7-methylguanosine 5ʹ-capped RNA)的测序的方法常用来鉴定启动子和转录起始位点(TSSs),可以做为DGE分析的补充。有多种方法都可以实现这个操作,但很少作为常规使用。在CAGE (cap analysis of gene expression)和RAMPAGE (RNA annotation and mapping of promoters for analysis of gene expression)方法中,使用随机引物完成cDNA第一条链合成后,mRNA 5ʹ帽子结构上用生物素标记,然后使用链霉亲和素富集5’ cDNA。CAGE使用II型限制性内切酶切割5ʹ端接头下游21-27 bp位置生成短cDNA序列。而RAMPAGE则使用模板置换 (template switching)来生成稍微长一些的cDNA,进行富集测序。单细胞标签逆转录测序技术 (single-cell-tagged reverse transcription sequencing, STRT-seq)能够在单细胞水平上鉴定TSS位点。这一方法使用生物素标记的模板置换寡核苷酸来合成cDNA,磁珠捕获并在5’端片段化然后测序。CAGE应用到的5ʹ末端标记技术是由日本理化所 (Riken)开发用于在早期功能基因研究中最大化获得全长cDNA的方法。日本理化所领导的小鼠功能注释 (FANTOM, Functional Annotation of the Mouse)项目中使用CAGE技术鉴定了1300多个人类和小鼠原代细胞、组织和细胞系的TSSs (转录起始位点),这充分显示了CAGE的强大。在最近的一个方法比较研究中,CAGE也表现最佳。但是作者同时也说到,仅使用5ʹ末端捕获测序鉴定出的TSS位点假阳性比较多,建议结合其他独立的方法进一步验证,如DNase I测序或H3K4me3染色质免疫共沉淀测序 (ChIP-seq)。

使用唯一分子标识符来检测PCR重复

RNA-seq数据通常有较高的重复率 (duplication rates),即许多测序序列会比对到转录组的相同位置。在全基因组测序中,比对到同一位置的序列被认为是PCR扩增引入的技术噪音,通常只保留1条用于后续分析;而在RNA-seq中,这些重复的序列则因为可能是真实的生物信号而被保留。高表达的转录本在样本中可能有数百万份RNA拷贝,当做为cDNA测序时,产生相同的片段也是合理的。因此,在比对 (alignment)过程中,不建议计算去除比对到同一位置的序列,因为它们代表了真正的生物信号。尤其是在使用单端测序 (single-end sequencing)时更是如此,因为一对片段只要一端序列相同就会被认为是一个重复 (duplicate);而双端测序 (paired-end sequencing)中,片段化的两端必须发生在同样位置才会导致duplicate,而这个的发生概率比较低。但是,在制备cDNA文库时,由于PCR的偏好性,还是会引入duplication reads;很难去评估PCR引入的重复reads和生物重复reads的比例并把其作为一个质控因素校正RNA-seq实验的结果。

UMIs被认为是一个处理扩增偏好性的方法。在cDNA分子扩增前加入随机UMIs可以用于识别并计算移除PCR引入的重复,而不影响到基因自身表达引入的重复,进而改善基因表达定量的结果和评估等位基因的转录。如果一对测序reads包含有相同的UMI并且比对到转录组的同样位置,则被认为是技术引入的重复 (对单端测序来说,这里的一对测序reads是测序生成的两条序列;对双端测序来说,一对测序reads指同时包含左端和右端的两条测序序列)。

UMIs已经被证明能够通过降低检测到的基因表达变化波动和假阳性率改善RNA-seq差异基因的统计分析。因为单细胞数据的扩增偏好更严重,UMI的使用对单细胞数据结果可靠性至关重要。当使用RNA-seq数据进行变异检测 (variant calling)时,UMIs也非常有用。高表达的转录本更容易达到适合变异检测的高覆盖率要求,尤其在考虑了重复reads时,而UMIs可用于移除PCR扩增引入的reads,从而校正等位基因频率的计算。UMIs已成为单细胞RNA-seq (scRNA-seq)的文库制备试剂盒的标配,也越来越多的用于常规RNA-seq。

改善降解了的RNA的分析

RNA-seq文库制备方法的发展也促进了低质量或降解了的RNA的分析,例如从临床获得的福尔马林固定石蜡包埋(FFPE)存储的样本中的RNA。低质量的RNA会导致不均匀的基因覆盖,更高的DGE假阳性率和更高的重复率,与文库的复杂性呈负相关。文库制备方法优化的方向是尽量降低RNA降解的影响。这些方法在开发基于RNA-seq的诊断技术中尤为重要,如类似于基于21个基因RNA特征来预测乳腺癌复发的OncotypeDX试剂盒(尚不基于测序)类似的检测工具。虽然现在有几种方法可以使用,但是比较研究显示两种方法表现最佳,即RNase H与RNA exome。如前所述,RNase H法使用核酸酶消化RNA:DNA复合物中的rRNA,但保留降解的mRNA用于后续测序。RNA exome方法使用寡核苷酸探针来捕获RNA-seq文库分子,非常类似于外显子测序 (exome sequencing)使用的策略。这两种方法应用简单,并都能在保留降解的和片段化的mRNA的前提下降低混入的rRNA的影响,进而获得高质量的和高稳定性的基因表达数据。3ʹ末端标记测序技术与扩增子测序(PCR扩增超过2万个外显子)方法也可以用于分析降解的RNA,但这两种方法并没有RNase H方法应用广泛。

设计更好的RNA-seq实验

好的DGE RNA-seq实验设计对获取高质量和有生物意义的数据是至关重要的。特别需要考虑的是生物重复的数目、测序深度、采用单端还是双端测序。

生物重复与统计检出力 (replication and experimental power)
实验中必须包含足够的生物学重复以捕获组内样品自身存在的生物差异。定量分析的可信度更多地取决于生物重复,而非测序深度或reads长度。尽管RNA-seq的技术稳定性高于微阵列平台,但生物系统固有的随机变异要求进行常规RNA-seq实验必须要重复一次。额外的重复能够帮助发现异常样品;并且在后续分析前,如有必要时移除或降低异常样品的权重。确定最佳重复数需要仔细考虑几个因素,包括预期的最小变化幅度 (effect size)、组内变异、可接受的假阳性和假阴性率以及最大能用于实验的样本量,并且可以通过使用RNA-seq实验设计工具或统计功效工具进行辅助设计。(http://www.biostathandbook.com/power.html )

样品生物学重复数据选择 1必要性 2需要多少重复?

确定实验的正确重复数并不总是那么容易。一项48个重复的酵母研究表明,当分析中仅包含3个重复时,许多用于DGE分析的工具仅检测到20-40%的差异表达基因。该研究表明,至少应使用六个生物重复,这大大超过了RNA-seq文献中通常报道的三个或四个重复。最近的一项研究表明,四个重复可能就足够了,但它强调了测量生物学差异的必要性-例如,在确定出重复数之前先进行预实验。对于高度多样化的样本(例如来自癌症患者肿瘤的临床组织),可能需要进行更多重复才能检测出高可信度的变化。

确定最佳测序深度
RNA-seq文库构建好后,就需要确定测序深度了。测序深度是指每个样品获得的测序序列数量。对于真核基因组中的bulk RNA DGE实验,通常需要每个样品大约10–30百万条测序reads。但是,多个物种的比较分析表明,对于最高表达的50%的基因来说,每个样本只需要测序1百万条 reads就可以获得与测序3千万条reads相似的表达定量结果。如果只关注最高表达的基因相对大的表达变化,并且有合适的生物学重复,那么较少的测序就足以产生驱动后续实验的假说。测序完成后,估计的测序深度可以通过检查样品之间reads的分布和绘制饱和度曲线验证,并且饱和曲线还可以评估加测是否能提高检测敏感性。随着测序仪测序通量的增加,将一个实验的所有样品混合到一起同时上机测序(甚至在同一个lane里面测序)是控制技术偏差的标准做法。总产出reads数是样本数与每个样本期望获得的reads数的乘积;如果有必要,混合的文库测序足够多的次数以达到所需的总reads数。混样测序需要仔细测定每个RNA-seq文库的浓度,并假定混合的不同样品中cDNA的总量相差不大(低方差),因此读取的总reads数才能均匀地分到各个样品中。在进行昂贵的多通道混合测序之前,运行单个lane确认样品之间cDNA总量相差不大是值得的预操作。

选择测序参数:reads长度和单端或双端测序
最后需要确定的测序参数包括reads长度以及是生成单端还是双端reads。

在许多测序应用中,测序reads的长度对数据可用性有很大影响,更长的测序reads可以覆盖更多的测序DNA。当使用RNA-seq鉴定DGE时,影响数据的可用性的重要因素是确定每个reads来自转录组中哪个基因的能力。一旦可以明确地确定reads位置,测序更长的reads在基于定量的分析中就没必要了。对于更定加性的RNA-seq分析(例如鉴定特定isoforms),更长的reads可能会更有帮助。

单端测序与双端测序的问题类似。在单端测序中,每个cDNA片段的一个末端(3′或5′)用于产生测序reads,而双端测序中每个片段产生两个测序reads(一个3′和一个5′)。在需要测序尽可能多核苷酸的实验中,首选long-read paired-end测序。在DGE分析中,用户只需要计算比对到转录本的reads数即可,故不需要对转录本片段的每个碱基都进行测序。例如,将“短”的50 bp的单端测序与“长”的100 bp的双端测序的DGE分析比较表明单端测序也可以获得一致的结果。这是因为单端测序足以确定大多数测序片段来源的基因。相同的研究还表明,短的单端测序会降低检测转录isoform的能力,更少的reads会跨越exon-exon junction。双端测序还可以帮助消除序列比对 (read mapping)的歧义,适用于可变外显子定量 (alternative-exon),融合转录本检测和新转录本发现 ,尤其在注释较差的转录组应用中效果明显。

实际上,单端或双端测序的选择通常取决于成本或用户可用的测序技术。在发布Illumina NovaSeq之前,在大多数情况下,单端测序每百万条reads的成本要低于paired-end测序,因此在相同的实验成本下,可以测序更多的重复或测序更深。如果需要在获取大量较短的单端reads与生成较长和/或双端的reads之间进行选择,则测序深度的增加将对提高DGE检测的敏感性更重要。

RNA-seq数据分析

在过去的十年中,用于分析RNA-seq以确定差异表达的计算方法的数量已成倍增加,即使对于简单的RNA-seq DGE,在每个阶段的分析实践中也存在很大差异。而且,每个阶段使用的方法的差异以及不同技术组合形成的分析流程都可能会对从数据得出的生物学结论产生重大影响。最优工具组合取决于研究的特定生物学问题以及可用的计算资源。尽管有多种衡量方式,但我们对工具和技术的评估落脚点在它们鉴定出的差异基因的准确性。为了完成这个评估,至少需要四个不同的分析阶段(图2;表2)。第一阶段把测序平台生成的原始测序数据比对到转录组。第二阶段量化与每个基因或转录本来源的reads数量,构建表达矩阵。该过程可能包括1个或多个子过程如比对,组装和定量,或者它也可以一个从读取计数生成表达矩阵。通常有一个第三阶段,包括过滤低表达的基因和至关重要的移除样品间技术差异的标准化过程。DGE的最后阶段是构建样本分组和其它协变量的统计模型,计算差异表达置信度。

Xnip2019-11-08_12-31-10.png

图2

第1阶段-测序reads的比对和组装

测序完成后,分析的起点是包含测序碱基的FASTQ文件。最常见的第一步是将测序reads比对到已知的转录组(或注释的基因组),将每个测序reads转换为一个或多个基因组坐标。传统上,该过程是通过几个不同的比对工具(如TopHat,STAR或HISAT)完成的,其都依赖参考基因组的存在。由于测序的cDNA来自RNA,可能跨越外显子边界,因此与参考基因组(包含内含子和外显子)比对时需要进行剪接比对,即允许reads中出现大片段gap。

如果没有可用的包含已知外显子边界的高质量基因组注释,或者如果希望将reads与转录本(而不是基因)相关联,则需要在比对后执行转录组组装步骤。诸如StringTie和SOAPdenovo-Trans之类的组装工具使用比对reads的gap来推测外显子边界和可能的剪接位点。转录本重头组装特别适用于参考基因组注释缺失或不完整的物种,或者对异常转录本感兴趣(例如在肿瘤组织中)的研究。转录组组装方法受益于双端测序和/或更长的reads的使用,增加跨越splice junctions的可能性。但是,通常不需要从RNA-seq数据中从头做转录组组装来确定DGE (生信宝典注:无参分析组装是必须的)。

最近,涌现了一些计算效率高的“alignment free”工具,例如Sailfish,Kallisto和Salmon,它们将测序reads直接与转录本关联,而无需单独的定量步骤。这些工具在定量高丰度(以及长度更长)的转录本方面表现出很好的性能。但是,它们在定量低丰度或短转录本方面不够准确。(39个工具,120种组合深度评估 (转录组分析工具哪家强))

不同的比对工具如何分配ambiguous reads的策略会影响最后的表达估计。对于可能来自多个不同基因、假基因或转录本的多映射reads (multi-map),这些影响尤为明显。对12种基因表达估计方法的比较显示,某些比对方法低估了许多临床相关基因的表达,这主要取决于对ambiguous reads的处理。在RNA-seq数据的计算分析中,对如何正确分配比对到多个位置的reads进行模型探索仍然是研究的一个重点领域。一种常见的做法是在定量前过滤掉这些reads,但这会导致结果产生偏差。其他方法包括生成包含合并映射重叠区域的“融合”表达特征,以及计算每个基因的映射不确定性估计,以用于后续的置信度的计算。

第2阶段-定量转录本丰度

将reads比对到基因组或转录组后,下一步就是将它们分配给基因或转录本,获得表达矩阵。不同的比较研究表明,定量过程中采用的方法对最终结果的影响最大,甚至比比对工具影响更大。单个基因(即该基因的所有转录亚型)的定量是基于转录组注释计算与已知基因重叠的reads数。但是,把短reads分配到特定isoforms则需要统计模型估计,尤其是很多reads不跨越剪接点,并且不能明确分配给特定isoform时。即使在仅研究基因水平差异表达的情况下,定量isoform的差异也会获得更准确的结果,尤其是基因在不同条件下主要表达不同长度的isoform时。例如,如果某个基因的一个isoform在一个样品组中的长度是另一样品组中的isoforms的一半,但表达速率是后者的两倍,则纯基于基因的定量将无法检测到这一表达差异。

常用的定量工具包括RSEM,CuffLinks,MMSeq和HTSeq,以及上述的无比对直接定量工具。基于reads计数的工具(例如HTSeq或featureCounts)通常会丢弃许多比对的序列,包括那些具有多个匹配位置或比对到多个表达特征的reads。这可以在随后的分析中消除同源和重叠的转录本。RSEM使用期望最大化模型来分配模糊的reads,而无参考的比对方法(例如Kallisto)则将这些reads用于后续的定量,这可能会导致结果偏差。转录本丰度估计可以转换成等效的read计数,能完成这一转换的部分工具依赖tximport包。量化步骤结束后会得到一个合并的表达矩阵,每个表达特征(基因或转录本)各占一行,每个样品各占一列,中间的值是实际读数 (reads count)或估计的表达丰度。

第3阶段-过滤和标准化

通常,基因或转录本的reads count需要进行过滤和标准化,以移除测序深度、表达模式和技术偏差的影响。过滤去除在所有样本中都低丰度表达的基因是很直接的方式,并且已经证明可以改善对真正差异表达基因的检测。标准化表达矩阵的方法要复杂一些。简单的转换可以校正丰度,降低GC含量和测序深度的影响。如今人们已经认识到诸如早期应用的RPKM之类的方法是不够的,并已被能够校正样本之间更细微差异的方法所替代,例如四分位数或中位数归一化。(什么?你做的差异基因方法不合适?)

比较研究表明,normalization方法的选择可能对最终结果和生物学结论有重要影响。大多数基于计算的标准化方法依赖于两个关键假设:首先,大多数基因的表达水平在生物重复中变化不大;第二,不同的样本组总的mRNA水平没有显著差异。而当这些基本假设不成立时,就需要仔细考虑是否以及如何执行标准化了。例如,如果一组特定的基因在一个样品组中高表达,而相同的基因加上另一组基因在另一个样品组中表达,那么简单地标准化测序深度是不合适的,因为在第二个样本组中相同数目的reads会分给更多数目的基因。标准化方法如edgeR所使用的的M-值的加权截尾均值 (trimmed mean of M-values , TMM)可以处理这一情况。确定合适的标准化方法是困难的;一种选择是尝试使用多种方法进行分析,然后比较结果的一致性。如果结果对标准化方法高度敏感,则应进一步探索数据以确定差异的来源。必须注意,这一比较不会被用于选择与原始假设吻合的结果的归一化方法。

解决此类问题的一种方法是使用spike-in对照RNA-即在文库制备过程中引入预定浓度的外源RNA序列。RNA-seq常用的spike-in有 External RNA Controls Consortium mix (ERCCs),spike-in RNA variants (SIRVs)和sequencing spike-ins (Sequins)。由于spike-in的RNA浓度是预先知道的,并且浓度与产生的reads的数量直接相关,因此可以校准样品中转录本的表达水平。有人认为,如果没有spike-in对照,则不能正确地分析总体表达变化较大的项目。然而,在实践中,可能难以始终如一地以预设水平掺入spike-ins ,并且它们在标准化基因水平上的reads计数时比在转录本水平上更可靠,因为单个isoform可以在样品中以显着不同的浓度表达。目前,尽管已发表的RNA-seq DGE实验中spike-in对照并未得到广泛使用,但随着单细胞实验的开展这一状况可能会改变,因为单细胞RNA-seq中spike-in应用广泛,当然前提是这个技术能进一步优化达到稳定的水平。

第4阶段-差异表达分析

获得表达矩阵后,就可以构建统计模型评估哪些转录本发生了显著的表达改变。有几个常用工具可以完成此任务;一些基于基因水平的表达计数,其它的基于转录本水平的表达计数。基因水平的工具通常依赖于比对的reads计数,并使用广义线性模型来进行复杂实验设计的评估。这些工具包括EdgeR,DESeq2和limma + voom等工具,这些工具计算效率高并且彼此之间结果稳定性好。评估差异isoforms表达的工具,例如CuffDiff,MMSEQ和Ballgown,往往需要更多的计算资源,并且结果的变化也更大。但是,在差异表达工具应用之前的操作(即关于比对、定量、过滤和标准化)对最终结果的影响更大。

Xnip2019-11-08_12-32-10.png

其它非bulk RNA分析

来自组织和/或细胞群体的RNA-seq彻底革新了我们对生物学的理解,但是它无法简单地用于解析特定的细胞类型,并且不能保留空间信息,这些对于理解生物系统的复杂性都是至关重要的。使用户能够处理非bulk RNA的方法与标准RNA-seq protocols非常相似,但是可以解决的问题却截然不同。单细胞测序已经揭示了在过去我们认为研究透彻的疾病中存在着未知的细胞类型,例如发现肺离子细胞 (ionocyte cells),这可能与囊性纤维化的病理学机制有关。空间分辨率的RNA-seq对实体组织中细胞间相互作用也有了新的发现,例如揭示成年心脏组织中存在一小部分胎儿标志物基因表达的细胞群体。在可预见的将来,Bulk RNA-seq将仍然是占主导地位且有价值的工具。但是,单细胞实验和分析方法正在被研究人员迅速采用,并且随着空间RNA-seq方法的成熟,它们也有可能成为常规RNA-seq工具的一部分。两种方法都将提高我们探究多细胞生物复杂性的能力,并且可能都需要与bulk RNA-seq方法结合使用。在这里,我们简要介绍了主要的单细胞和空间分辨转录组方法,它们与bulk RNA-seq的区别以及用户需要考虑的新问题。

Xnip2019-11-08_12-33-12.png

图3

单细胞分析
scRNA-seq最早于2009年报道,方法是在含有裂解缓冲液的Eppendorf管中分离单个卵母细胞。其在新生物学问题的应用,以及可用的实验和计算方法发展之快以至于最新的综述也迅速过时了。每种scRNA-seq方法都需要解离实体组织,分离单个细胞(使用非常不同的方法),并对其RNA进行标记和扩增以进行测序,并且所有步骤都脱胎于bulk RNA-seq protocols。(单细胞转录组教程汇总)

机械分解和collagenase及DNase的酶解在单细胞悬浮液中产生的活细胞比例最高,但是这一比例具有高度组织特异性,最好根据经验确定,并且要非常小心。一旦制备了单细胞悬液,就可以通过各种方法分离单个细胞(图3a);由于大多数实验室都可以使用流式细胞仪,因此最容易获得的方法是将细胞直接分选到含有裂解缓冲液的微量滴定板中。对于更高通量的实验,存在多种用于分离细胞的技术,但需要构建或购买特定的单细胞仪器。单个细胞可以在微流体芯片中进行物理捕获,或按照泊松分布模型加载到纳米孔设备中,也可以通过基于液滴的微流控技术(例如在Drop-Seq,InDrop中)分离单细胞并与后续反应试剂包裹在一个液滴中,或者采用原位序列条形码标记(例如单细胞组合索引RNA测序(sci-RNA-seq)和基于分池连接的转录组测序(split-pool ligation-based transcriptome sequencing, SPLiT-seq))。单细胞分离后会被裂解释放RNA到溶液中以进行cDNA合成,并用于RNA-seq文库制备。通常在文库制备过程中会使用PCR扩增单个细胞的RNA。这一步扩增会引入PCR偏差,需要使用UMI进行校正。尽管由于逆转录过程符合Poisson采样分布,但只有10–20%的转录本会被逆转录,限制了转录本检测的敏感性,不过各种方法都可以生成可用的数据。在湿实验室之外,计算方法也在迅速发展,并且最近出现了关于scRNA-seq实验的设计指南。方法学的飞速发展意味着scRNA-seq方法的技术会快速过时。尽管如此,Ziegenhain等人提供了scRNA-seq方法的综述,强调了UMI在数据分析中的重要性,并展示了所比较的的六种方法中哪一种最敏感。但是,他们的研究不包括被广泛采用的10X Genomics技术。

用户选择scRNA-seq方法时应考虑的主要因素包括他们是否需要测序全长转录本,测序更多细胞(广度)或每个细胞测序更深获得更多转录本(深度)和实验预算之间的权衡。全长scRNA-seq方法通常具有较低的通量,因为每个细胞需要独立处理直到获得最终的scRNA-seq库。然而,这一方法允许用户研究可变剪接和等位基因特异性表达。非全长检测方法只测序转录本的3’或5’末端,这在检测isoforms表达时会受限,但是由于在单个细胞cDNA合成后可以pool到一起,因此可以分析的细胞数量要高出2-3个数量级。单细胞测序的广度是指同时测序的细胞、组织或样品的数量,而深度是指给定数量的测序reads可分析覆盖多少转录本。尽管实验中能测序的细胞数量是由选择的方法决定的,但它确实具有一定的灵活性,随着所分析的细胞数量的增加,增加的测序成本通常会限制转录组测序的深度。因此,可以根据广度和深度这两个维度来评估不同的scRNA-seq系统。通常,基于X孔板 (plate-based)的方法或微流控方法通常捕获最少的细胞,但每个细胞检测更多的基因,而基于液滴的系统可用于分析最大数量的细胞,如有的项目一次分析超过一百万个细胞。

scRNA-seq的发展正在推动大规模的细胞图谱项目,以期确定生物体或组织中所有细胞类型。Human Cell Atlas和NIH Brain Initiative项目分别对人体和大脑中存在的所有细胞类型进行测序。The Human Cell Atlas旨在在第一阶段对3千万至1亿个细胞进行测序,并且随着技术的发展,其广度和深度将不断增加。该项目的最新成果包括发现肺离子细胞 (ionocyte cells),以及发现儿童和成人的肾脏癌起源于不同细胞类型。但是,研究者应该意识到scRNA-seq技术几乎可以应用于任何生物体。最近,对拟南芥根细胞原生质体的单细胞分析表明,即使植物细胞坚硬的细胞壁都不是分离单细胞并且进行测序的障碍。scRNA-seq正在迅速成为生物学家工具箱的标配,并可能在10年内像今天的bulk RNA-seq一样广泛使用。

空间分辨的RNA-seq方法
当前的bulk和scRNA-seq方法为用户提供了有关组织或细胞群体的高度详细的数据,但都没有保留细胞的空间位置信息,这降低了确定细胞所处环境与基因表达之间关系的能力。实现空间转录组学研究方法的两个技术是“空间编码” (spatial encoding)和“原位转录组学” (in situ transcriptomics)。空间编码方法在RNA-seq文库制备过程中记录空间信息,方法是分离空间固定的细胞 (spatially restricted cells)(例如通过激光捕获显微切割(LCM)),或根据分离前的位置加入条形码编码 (从组织切片中捕获mRNA)。原位转录组学方法是在组织切片内的细胞进行RNA进测序或RNA成像获得表达数据。我们推荐对此感兴趣的读者阅读最近的相关综述以获得更多了解。

LCM配合RNA-seq已成功从组织切片中分离和测序单个细胞或特定区域。尽管需要专用设备,但LCM在许多机构中广泛可用。尽管它可以实现高空间分辨率,但是却很费力,因此很难做大规模。在Spatial Transcriptomics(美国10X Genomics公司)和Slide-seq方法中,采用寡核苷酸芯片 (oligo- arrayed microarray slides)和布满寡核苷酸的凝珠 (densely packed oligo-coated beads) 直接从冷冻组织切片中捕获RNA进行测序。寡核苷酸包含spatial barcode,UMI和oligo-dT引物,可唯一识别每个转录本及其位置。测序reads比对回玻片坐标获得空间基因表达信息。已经证明,Spatial Transcriptomics可用于多种物种的组织,包括小鼠脑和人乳腺癌组织、人心脏组织和拟南芥花序组织。Slide-seq是一项最新开发的技术,已显示可用于小鼠大脑的冷冻切片分析。这些直接的mRNA捕获方法不需要专门的设备,具有相对简单的分析方法,并且可能大规模应用于许多组织。但是,有两个重要的问题有待解决。首先,该技术只能应用于新鲜的冷冻组织。其次,分辨率受到芯片大小和寡核苷酸凝珠间距的限制;当前应用的芯片大小分别为6.5×7 mm和3×3 mm,限制了可以检测的组织切片的大小。Spatial Transcriptomics的凝珠直径为100 µm,间隔为100 µm,这意味着它们不够小或不够密,以致无法实现单细胞分辨率。Slide-seq的凝珠 (beads)小得多,直径仅为10 μm,并且堆积致密,提供了十倍的空间分辨率,大约一半的beads可以获得单个细胞数据。计算整合分析组织消化分离后scRNA-seq与空间编码数据可以提高分辨率,但是还需要随着技术的发展这才能成为常规的RNA-seq工具。

能替代上述空间分辨RNA-seq方法的技术包括原位测序和基于成像的单分子荧光原位杂交技术。与RNA-seq方法相比,这些方法产生的转录组谱更窄(能检测的转录本更少),但可直接检测RNA,而靶向方法则可分析低丰度转录本。同时,它们提供有关组织结构和微环境的信息,并可生成亚细胞数据。虽然取得了很多进展,但基于成像的方法的主要局限性是对高分辨率或超高分辨率显微镜与自动流控相结合的需求,以及成像所花费的时间可能长达数小时,甚至数天。相较于测序成本以快于摩尔定律预测的速度下降,让基于成像的系统能进行高通量分析处理的机会却很有限。

目前,上述所有提到的空间转录组学方法都受到无法生成深度转录组数据、细胞分辨率和/或成本(时间和/或金钱)非常高的限制,但是相关方法正在迅速改进,并且已经应用于临床样品。用于空间组转录组学分析的特定计算方法开始出现。此外,原位RNA测序和基于成像的方法的进步已使获得10^3至10^5个细胞的转录组数据成为可能,这于基于液滴的单细胞方法可获得的细胞量相似。未来的发展可能会使空间转录组学可以被更广泛的用户使用。但是,大多数用户可能不太需要真正的单细胞或亚细胞分辨率。这样,对检测更多转录本的需求和对广泛的组织或样品的适用性可能会推动这些技术在特定领域的发展。如果可以克服空间转录组技术的这些局限性,那么它可能会被广泛采用。

非稳定状态RNA的分析

DGE研究使用RNA-seq来测量稳态mRNA水平,这是通过平衡mRNA转录、加工和降解的速率来维持的。但是,RNA-seq也可用于研究转录和翻译的过程和动态变化,这些研究为基因表达研究提供了新的视角。

捕获新生RNA测量活跃转录
基因表达实质上是一个动态过程,DGE分析无法检测复杂转录响应过程中的细微和快速变化,也不能鉴定不稳定的非编码RNA(例如增强子RNA)。RNA-seq可用于定位TSS并定量正在转录的新生RNA,从而能够研究RNA动力学。但是,与DGE分析相比,新生RNA的研究具有挑战性,因为它们的半衰期短且丰度低。因此,了解RNA动力学的重要性催生了多种分析新生RNA研究方法。这些方法揭示了启动子的不同转录程度,转录激活状态的RNA聚合酶II(Pol II)在启动子近端的停留是基因表达调控的关键步骤,新生RNA可以直接调节转录,并且它的序列和结构影响转录延伸、暂停和停滞 (stalling),以及染色体修饰酶和增强子RNAs的结合。旨在区分新转录的RNA和其他RNA的新生RNA-seq方法可以大致分为三类:run-on方法,基于Pol II免疫沉淀(IP)的方法和代谢标记方法(图4)。

Xnip2019-11-08_14-38-09.png

图4

Run-on方法依赖于转录时掺入核苷酸类似物,用于从总RNA中富集新生RNA,并可以测量RNA瞬时转录(图4a)。Global run-on sequencing(GRO-seq)和precision nuclear run-on sequencing(PRO-seq)通过在转录过程中分别将5-溴尿苷5′-三磷酸(BrU)或生物素标记的核苷酸掺入新生RNA中来实现这一目标。在添加外源生物素标记的核苷酸并恢复转录之前,分离细胞核并洗去内源核苷酸。测序免疫沉淀或亲和层析富集的新生转录本可以确定转录组范围内活性转录的RNA聚合酶的位置和活性。取决于转录时掺入的标记核苷酸的数量,GRO-seq只能达到10-50 bp的分辨率,这降低了TSS定位的精度。PRO-seq可实现单碱基分辨率的定位,因为在生物素核苷酸掺入后转录会停止,从而可以确定掺入位点。Run-on方法在概念上很简单-仅将掺入修饰了的核苷酸的RNA分子富集用于测序,但实际上,背景非新生RNA的存在会增加所需的读取深度。这些方法的使用揭示了在启动子上发散或双向转录起始的程度,并确定了增强子RNA在调节基因表达中的作用。通过结合对5′-帽RNA的特异性富集,GRO-cap,PRO-cap或小的5′-帽RNA测序(START-seq)提高了检测转录起始的敏感性和特异性和捕获可能在转录过程中被加工去除的RNA,减少转录后加帽的RNA产生的背景信号。

Pol II IP方法,例如native elongating transcription sequencing (NET-seq) 和native elongating transcript sequencing for mammalian chromatin (mNET-seq),使用anti-FLAG (for FLAG-tagged Pol II) 或其它结合Pol II C末端功能域(CTD)的各种抗体拉下Pol II相关的RNA。尽管非新生的Pol II结合的RNA和背景mRNA会导致更高的测序深度并混淆分析,但富集测序与这些染色质复合物相关的新生RNA可用于绘制TSS位点。NET-seq可能特异性较低,与Pol II强相关的任何RNA都可能污染新生RNA的富集,NET-seq数据中存在的tRNA和小核仁RNA可以说明这一点。在mNET-seq中使用的多种CTD抗体揭示了CTD修饰调控转录的机制,检测RNA加工中间体并能够将特定Pol II的新生RNA定位于TSS。然而,这些能力是以更复杂的实验为代价的,需要更多的细胞和更高的总体测序成本。

用核苷酸类似物4-硫尿苷(4 sU)进行代谢标记 (metabolic pulse-labelling)可以鉴定新生的RNA(图4c)。但是,在需要较长标记时间的方法中,大多数转录本都会被标记,限制其灵敏度。通过特异地靶向RNA的3′末端(即最接近RNA聚合酶的新转录的RNA),瞬时转录组测序(TT-seq)和硫醇(SH)-连接的烷基化RNA代谢测序(SLAMseq)减少5’RNA的信号。TT-seq将标记时间限制为5分钟,以便仅标记新转录本的3′末端,并且在生物素亲和纯化之前增加RNA片段化步骤以富集标记的RNA。SLAM-seq整合了3′mRNA-seq文库制备(尽管它也可以使用其他文库制备方法,例如miRNA文库),只测序标记了的新转录的RNA,而不是整个转录本。另外,在SLAM-seq中,在RNA提取后加入碘乙酰胺,用于烷基化整合到新生的RNA中的4 sU残基。这一修饰诱导了逆转录依赖的胸腺嘧啶至胞嘧啶(T> C)核苷酸转换,在测序分析中会被检测为“突变”,从而直接鉴定出4 sU整合位点。但是,低整合率意味着只有少数4 sU位点被转换为了胞嘧啶,限制检测敏感性。TUC-seq和TimeLapse-seq这两种方法也使用T> C突变分析,但不富集3’末端。他们已用于探索细胞干扰后的转录响应和测量RNA半衰期。

用于新生RNA分析的方法尚未直接做过比较。检测新生RNA的测序方法都受到非特异性背景和/或降解的RNA混入的负面影响,使得测序需要更高的深度。通过仅测序RNA 3′末端,PRO-seq,TT-seq和SLAM-seq中非新生RNA的影响会被降低,但是几乎没有证据表明任何一种方法会优于其他方法。亲和层析捕获比较费力,并且需要比代谢标记法更高的起始RNA,但是确定标记 (pulse-labelling)所需的时间很复杂,标记时间短时后续用于分析的RNA也会少,限制了检测敏感性。近来组织特异性RNA标记技术和用于“突变”分析的新计算方法的发展,可能会促使用户对新生RNA和其他RNA的检测从生化(基于生物素的)富集转换为生信富集。新生RNA检测方法的进一步发展以及它们与其他方法(例如空间转录组或RNA–RNA和RNA–蛋白质相互作用方法)的结合,将使我们对转录过程有更深入的了解。

核糖体图谱定量活性转录
RNA-seq的主要重点在于分析样品中现存的mRNA的种类和数量,但是mRNA的存在并不直接对应于蛋白质的产生。两种方法-多聚核糖体图谱 (polysomal profiling)和Ribo-seq技术允许我们跳出转录研究翻译组。核糖体翻译mRNA是受到高度调控的,蛋白质水平主要由翻译活性决定。Polysomal profiling和Ribo-seq帮助研究一个转录本上结合了多少核糖体及它们在转录本上的分布规律(图5)。这允许我们推断在特定时间或细胞状态下哪些转录本正在活跃翻译。两种方法均假设mRNA上的核糖体密度与蛋白质合成水平相关。样品比较分析发现在发育过程中或翻译失调相关疾病中,如纤维化,阮病毒病或癌症,处理前后随着时间推移的核糖体动力学。

Xnip2019-11-08_14-38-55.png

图5

Polysome profiling多核糖体分析使用蔗糖梯度超速离心法将多个核糖体结合的mRNA (polysomal fraction)与单个或无核糖体结合的mRNA (monosomal fraction)分离分别用于RNA-seq文库制备(图5a)。在polysomal fraction比monosomal fraction中检测到更高丰度的mRNAs翻译活性更高。该方法不仅可以推断单个mRNA的翻译状态,还可以生成核糖体占有率和密度的高分辨率图谱(尽管它无法确定核糖体的位置)。后续也对原始方法进行了一些改进。例如,使用非线性蔗糖梯度改善了在不同浓度蔗糖溶液临界浓度处多聚核糖体mRNA的收集;应用Smart-seq文库制备方法可以检测低至10 ng的多聚核糖体mRNA;使用更高分辨率的蔗糖梯度和深度测序允许检测转录本异构体特异性翻译。然而,多核糖体谱分析只能产生相对低分辨率的翻译谱,并且是需要专门设备,限制了其广泛使用。

Ribo-seq基于RNA印记,最初是在酵母中开发。它使用环己酰胺抑制翻译延伸进而导致核糖体停滞在mRNA上。用RNase I消化mRNA会留下核糖体保护的20–30个核苷酸印记,用于后续构建RNA-seq文库(图5b)。Ribo-seq可以获得高分辨率翻译谱,同时检测单个转录本上核糖体丰度和定位。能够获得多聚核糖体分析无法检测到的核糖体在转录本上位置的分布,意味着可以检测到影响蛋白质表达调控的翻译暂停事件 (translation pausing)。Ribo-seq技术的优化包括缓冲液和酶的优化,可以更清楚地揭示Ribo-seq数据的3 bp周期性,以及barcode和UMI的使用可以确定单分子事件。尽管最近开发了用于寻找开放阅读框,用于差异或isoforms水平翻译分析和用于研究密码子偏好性的特定工具,但标准RNA-seq工具仍可用于计算分析。Ribo-seq的主要局限性在于依赖超速离心和由于核酸酶批次间活性的差异需要凭经验确定消化条件。

前面提到的方法不能区分翻译起始、延伸和终止的信号,但是对Ribo-seq的改进使得可以对翻译动力学进行进一步研究。定量翻译起始测序(QTI-seq)通过化学“冻结”富集起始核糖体,同时从相关mRNA中去除延伸核糖体来定位翻译起始位点 (生信宝典注:原文写的是maps transcription initiation sites,应该是笔误)。在组装成熟核糖体之前,Translation complex profile sequencing (TCP-seq)通过富集与成熟核糖体RNA组装前的40S核糖体小亚基结合的RNA来定位翻译起始位点。同时,由于这种方法保留了核糖体的完整性,因此也可以分析和比较80S核糖体部分,从而获得更完整的翻译动力学分析(图5b)。

所有的翻译组方法在概念上都是相似的;他们假设mRNA核糖体密度与蛋白质合成水平相关。尽管它们的样品制备方案不同,但是都需要大量的起始细胞。最终,可能需要将它们与RNA-seq结合以了解基因表达水平,并与蛋白质组学结合以确定蛋白质水平,才能全面了解mRNA翻译。如果想详细了解翻译组分析,文中也推荐了其它综述。

超越基因表达分析

RNA在其他生物分子和生物过程(例如剪接和翻译)的调控中起着重要作用,这些过程涉及RNA与各种蛋白质和/或其他RNA分子的相互作用。RNA-seq可用于探究分子内和分子间RNA-RNA相互作用(RRI),或RNA与蛋白质的互作,从而可以更深入地了解转录和翻译过程(图6)。为互作组 (interactome)分析而开发的各种方法都有一个共同点:富集相互作用的RNA。一些方法利用了天然的生物相互作用,另一些方法则在目标分子之间发生瞬时结合或共价结合。大多数使用抗体,亲和层析或探针杂交来富集用于测序的RNA。在这里,我们简要介绍基于RNA-seq的结构组 (structurome)和互作组 (interactome)。

Xnip2019-11-08_14-39-51.png

图6

通过分子内RNA相互作用探测RNA结构
核糖体RNA和tRNA构成细胞的大部分RNA。它们与其他有特定结构的非编码RNA一起在基因调控到翻译的多种细胞过程发挥作用。用于解析RNA结构的方法主要有两种,分别是基于核酶的方法和化学探针法。核糖核酸酶消化法于1965年首次用于确定(tRNA-Ala)RNA结构。在随后的40年中开发了化学方法,例如基于引物延伸化学分析进行选择性2′-羟基乙酰化法(SHAPE),可以在碱基对分辨率下确定tRNA-Asp的结构。但是,只有将各种核酶法和化学法与RNA-seq结合使用,才能进行全转录组范围而非单个RNA水平的结构分析,这会加深我们关于RNA对结构组复杂性和重要性的理解。在这里,我们着眼于核酶法和化学探针法之间的主要差异(图6a)。请阅读Strobedl的综述做更全面的了解。

核酶法,例如RNA结构并行分析法(PARS, parallel analysis of RNA-structure)和片段测序(FRAG-seq, fragmentation sequencing),使用可以消化单链RNA(ssRNA)或双链RNA(dsRNA)的核酶。核酸酶消化后剩余的RNA用作RNA-seq文库制备。随后通过对所得RNA-seq数据进行计算分析,确定结构化(双链)和非结构化(单链)区域。核酸酶简单易用并允许对ssRNA和dsRNA进行研究,但由于核酸酶消化的随机性,它们的分辨率比化学法要低。此外,核酶的大体型使得它们不能进入细胞,进而不适用于体内研究。

化学映射方法使用与RNA分子反应的化学探针标记结构化或非结构化核苷酸。这些标记可阻止逆转录或导致cDNA误整合 (micincorporation),进而可通过对RNA-seq reads进行测序和分析以获得结构组学结果。SHAPE测序(SHAPE–seq)通过与RNA骨架的核-2′-羟基反应来标记未配对的ssRNA,发夹环中的碱基堆积会降低标记效率。Structure–seq和硫酸二甲酯测序(DMS-seq, dimethyl sulfate )用DMS标记腺嘌呤和胞嘧啶残基,阻断了逆转录,使得能够通过分析所得的截断cDNA推断出RNA结构。SHAPE和突变图谱分析(SHAPE–MaP)和DMS突变图谱分析(DMS–MaPseq)都优化了实验条件提高逆转录酶的合成能力并防止cDNA截断。相反,化学标记会导致误掺入事件,然后使用RNA-seq数据分析这些“突变”以揭示RNA结构。化学探针是小分子,可以在体内研究更具生物学意义的结构体;由于细胞内环境的动态变化,数据的变异度也会高一些。化学法还可以用于进行新生RNA的结构分析,并揭示共转录RNA折叠的顺序。

核酸酶和逆转录阻断法通常产生短RNA片段,并且仅检测单个消化位点或化学标记,而误掺入和突变检测方法每条测序reads可能检测到多个化学标记位点。这些方法都不是没有偏好的, 逆转录阻断效率不会达到100%,诱导突变的化学标记可能会阻断cDNA的合成,这两个因素都会影响数据的分析解释。Spike-in对照可能会提高结构组分析的质量,但尚未得到广泛使用。SHAPE方法的比较揭示了仅在体内实验中明显的效率差异,强调了比较此类复杂方法时需要特殊注意。

这些方法揭示了RNA结构在基因和蛋白质调控机制中的新作用。例如,对DMS数据的分析发现,RNA结构可以调节APA,并可能减缓催化活性区域的翻译,从而为蛋白质折叠提供更多时间减少错误折叠事件。可能需要结合使用多种结构RNA-seq方法才能获得完整的结构组图谱。随着该领域研究的深入,我们可能会发现RNA结构与发育或疾病状态之间的联系。最近的结果表明异常RNA结构在重复扩增导致的疾病中可能有调控作用。最终,结构组分析可以促使开发靶向结构清晰的RNA的小分子,从而开辟疾病治疗药物开发的新领域。

探索RNA–RNA分子间互作 (RRI)
分子间RRI在转录后调控中起重要作用,例如miRNA靶向3’UTR。已经开发的用于研究分子间RRI的工具,可用于靶向和全转录组的分析。这些方法有共同的操作流程,其中RNA分子在断裂和就近自连之前先进行交联固定互作状态(图6b)。通过不同方法生成的大多数(但不是全部)嵌合cDNA源自稳定碱基配对(即相互作用)的RNA分子之间的连接。靶向方法,例如CLASH (crosslinking, ligation and sequencing of hybrids),RIA-seq (RNA interactome analysis and sequencing), RAP-RNA (RNA antisense purification followed by RNA sequencing)可以生成单个RNA的深度相互作用图谱。CLASH可使用IP富集法分析特定蛋白质复合物介导的RRI,而RIA–seq使用反义寡核苷酸pull down与靶标RNA相互作用的RNA。两种方法都不能区分直接和间接RRI,这使生物学解释变得复杂。为了提高RRI分析的分辨率,RAP–RNA使用psoralen和其他交联剂,然后用反义寡核苷酸捕获RNA,并通过高通量RNA-seq检测直接和间接RRI。尽管该方法确实允许进行更特异的分析,但它需要准备多个文库(每种交联剂一个)。

全转录组方法与靶向方法基本相似:相互作用的RNA在体内进行交联并富集。富集通过减少连接反应中携带的非相互作用RNA的量来提高特异性,可以通过2D凝胶纯化富集(如PARIS,psoralen analysis of RNA interactions and structures法中)或使用生物素亲和层析富集( 如 SPLASH,sequencing of psoralen crosslinked, ligated and selected hybrids),或通过RNase R消化去除未交联的RNA(如LIGR-seq,ligation of interacting RNA followed by RNA- seq)。连接后,去交联,然后进行RNA-seq文库制备和测序。PARIS方法产生最大数目的相互作用,但每个样品需要7500万条测序reads,比其他RRI方法要多很多,并且是DGE分析平均测序深度的两倍以上。

整合RNA互作数据分析可以同时对多种相互作用进行探索,并揭示了不同种类RNA的RRI分布的变异。总的来讲,90%的RRI有mRNA参与。近一半有miRNA或长链非编码RNA参与,并且大多数互作都靶向mRNA。这些数据整合比较分析揭示了特定RNA种类在不同方法中存在很大偏好性,这导致方法之间几乎没有检测到共有的互作。因此,要完整了解RRI,可能需要使用不止一种方法。但是,RRI方法存在一些局限性。也许最具挑战性的是RRI是动态的,并且受结构构象和其他分子间相互作用的影响,如果没有重复,结果就很难解释。分子内相互作用为分子间RRI分析增加了噪音,这要求将高度结构化的RNA(例如rRNA)过滤并去除。其他问题包括RNA提取过程中的相互作用破坏,需要稳定的交联方法,但最常用的RRI交联试剂 psoralen和4′-氨基-甲基三氧杂沙仑(AMT)-仅能低效交联嘧啶,降低了方法的敏感性。此外,邻近连接步骤效率低下,并且可能同时连接相互作用和非相互作用的RNA,从而进一步降低了灵敏度。

研究RNA与蛋白质的相互作用。
ChIP-seq已成为探索DNA-蛋白质相互作用的必不可少的工具。一种类似的IP方法可以用于研究RNA与蛋白质的相互作用。RNA与蛋白质的相互作用方法也依靠IP,利用一种针对感兴趣的蛋白的抗体来捕获其结合的RNA进行分析(最初是结合微阵列芯片使用)(图6c)。各种RNA与蛋白质相互作用方法之间最明显的区别是互作的RNA和蛋白质是否进行交联以及如何交联:有些方法避免交联(直接IP),另一些方法则使用甲醛进行交联,而另一些方法则使用紫外线(UV)进行交联。.最简单的方法是RIP-seq( RNA
immunoprecipitation and sequencing ),通常但并非总是使用细胞内未加改造的蛋白的抗体富集,并且不需要RNA片段化处理。其操作简单使得该方法易于采用。RIP-seq可以获得有生物意义的分析结果,但是有两个大的缺点。首先,用于保持RNA与蛋白质相互作用的温和洗涤条件意味着相对高水平的非特异性结合片段也会得以富集。第二,RNA片段化步骤的缺失降低了结合位点的分辨率。因此,RIP-seq结果高度可变,并取决于RNA-蛋白质结合的天然稳定性。使用甲醛交联在RNA及其相互作用的蛋白质之间产生可逆的共价键可以提高稳定性并减少非特异性RNA的pull down,但是甲醛也会产生蛋白质-蛋白质交联。可以通过与0.1%甲醛进行轻度交联(比用于ChIP–seq研究的低10倍)来缓和这种影响,这在在多个蛋白质靶标上获得了高质量的结果。

在CLIP中引入的254-nm UV交联是一项至关重要的改进,它提高了RNA-蛋白质相互作用分析方法的特异性和结合位点鉴定的分辨率。UV交联会在蛋白质和RNA的相互作用位点之间建立共价键,但至关重要的是,不会导致互作蛋白的交联。这样可以稳定RNA与蛋白质的结合,从而允许使用之前会破坏RNA-蛋白互作的更严格的富集操作,减少背景信号。随后,CLIP protocol已成为许多方法开发的基础。单核苷酸分辨率CLIP(iCLIP)将UMI纳入文库制备中以去除PCR重复。同时它还利用交联核苷酸上cDNA合成过程中普遍存在的未成熟终止的优势,通过截断的cDNA扩增获得单核苷酸分辨率的交联位点的定量检测图谱。PAR-CLIP(Photoactivatable- ribonucleoside-enhanced CLIP)通过使用4 sU和356-nm UV交联获得单核苷酸分辨率的RNA-蛋白互作图谱。4 sU在细胞培养过程中被整合进入内源性RNA,而356 nm的紫外线照射仅在4 sU插入位点产生交联(获得高特异性)。在所得序列数据中检测反转录诱导的T>C替换可实现碱基对分辨率的检测解析,并可区分交联片段与非交联片段,从而进一步降低背景信号。对CLIP的最新改进提高了它的效率和敏感性。红外CLIP(irCLIP)采用红外凝胶可视化和基于beads的纯化功能取代了放射性同位素检测。这些改变使得试验操作更简单,而且仅需20,000个细胞 (iCLIP通常需要1-2百万个细胞)就可以进行RNA-蛋白质互作分析。eCLIP (enhanced CLIP)去掉了RNA-蛋白质复合物的质控和可视化过程,将样品barcode与RNA adaptor结合在一起,使多个样品可以更早地混合,并用beads代替凝胶进行片段富集。这些更改旨在简化用户的操作,作为ENCODE项目的一部分,已经针对近200种蛋白质进行了eCLIP实验。但是,irCLIP和eCLIP目前均未得到广泛采用,部分原因是eCLIP和irCLIP敏感性的某些提高可能是由于特异性的降低所致;支持这一结论的是,这两种方法检测到的PTBP1结合位点处结合基序和调控的外显子富集度降低。由于大量公开可用的数据为计算分析提供了新的资源,因此重点考虑CLIP数据的质量控制,过滤,鉴定结合位点 (peak calling)和标准化所采用的方法,这些都会影响数据的生物学解释。对此感兴趣的读者建议继续阅读推荐的综述。

某些RRI方法和所有的RNA-蛋白质的互作检测依赖于IP富集,因此仅能应用于有比较好的结合抗体的蛋白质的分析,而且非特异性抗体结合仍然是一个问题-尽管不只限于该领域。RNA结构也影响RNA与蛋白质的相互作用;一些蛋白质识别特定的RNA二级结构或与这些结构竞争结合RNA,这使体外的发现用于研究体内生物调控变得复杂。此外,RRI和RNA-蛋白质相互作用方法通常检测的是特定转录本或特定位置互作的平均值。实验方法、计算方法和单分子测序的进一步发展可能有助于解析这些内部的生物差异。

结论

Wang,Gerstein和Snyder在他们的预测中认为:RNA-seq将“给真核转录组分析带来革命性变革”。但是,即使他们也可能对技术拓展应用到如此之多的RNA层面感到惊讶。今天,我们可以分析RNA生物学的许多方面,这对功能基因组的理解,研究发育以及引起癌症和其他疾病的分子失调都是必不可少的。尽管生物学发现阶段还远远没有结束,但临床已经在使用基于RNA-seq的检测试验。单细胞测序已成为许多实验室的标配,空间单细胞组学分析随着方法的进一步发展也很可能会遵循类似的发展路径。对大部分的研究者而言,长读长测序方法有可能取代Illumina的短读长RNA-seq作为默认的研究方法。为了使这种情况发生,就增加通量和降低错误率方面,长读长测序技术还需要进行重大改进。如果长读长测序变得与短读长测序一样便宜可靠,那么除了对RNA降解的样品之外,鉴定mRNA isoforms都会首选长读长测序。考虑到这一点,任何关于RNA-seq在未来十年内发展的预测都可能会过于保守。

Science Career | How to keep a lab notebook

我把那张纸放哪了?我什么时候做的这个实验?我把数据文件存哪去了?如果你发现自己经常要从实验时草草记下的笔记里找一个重要的实验细节,或者试图回忆起什么时候做了什么实验,又或者搜遍了你的硬盘才找到想要的文件,也许你是时候需要重新考虑一下怎样写实验记录了。不管你是在实验室、地里还是做理论研究的,你都需要做好记录,清清楚楚地记录下来你做了什么,这样你或者其他人才能够返回来查阅,如果需要的话。

其实除了传统的纸质版的实验记录,还有很多工具能够帮助科学家们记录工作和进展,但到底如何记录才最有效,有没有什么好的方法,却很少会有人教你。许多科研机构、组织都有关于实验记录的要求或指南,但在保证遵守这些规定之外,其实你可以自由发挥,按照自己的喜好来,找到最合适最有效的方式。Science Careers走访了来自不同学科、处于不同事业阶段的科研工作者们,在这里和大家一起分享他们记实验记录的窍门和策略。为了保持内容短小精悍,回答内容已稍作修改。

实验记录是件麻烦事,为什么还要花时间精力去做呢?

每天写实验记录就像看牙医,没人愿意去,但你不去牙又会坏。实验记录是你每天在实验室创造的最有价值的财富,一份好的实验记录还真的需要每天花点功夫。一旦你养成了习惯,有了自己喜欢的模式,写实验记录也就不那么麻烦了。

——Caroline Bartman,普林斯顿大学定量代谢组学博士后

我的实验记录本里清楚地记录了我所有的实验过程、失败经验还有体系优化,这是保持严谨和可重复性的非常重要的工具。如果我忘了我怎么做的实验或者怎么分析的数据,我都可以在实验记录本里查到,而且还能帮助以后需要做类似实验的同学,他们可以作为参考并知道我已经试过哪些条件了。

——Maiko Kitaoka,加州大学伯克利分校分子和细胞生物学博士生

勤奋地记录下每天的实验过程可以帮我理解某些结果,详细记录有时会帮上我的大忙,让我意识到某天的结果异常很有可能是环境因素比如当天的温度变化导致的。久而久之,我的实验记录本还成了我记录想法的地方。你肯定不想实验中间突然去改实验设置或者方法,但你的实验记录本正是设想下一步如何改动的完美之地。

——Valentina Ferro,实验物理学博士,在华盛顿西雅图任自由科学插画师

对于搞理论研究的我来说,记录本非常非常必要,我可以记录下我解决问题的过程。如果不好好记录,我很有可能会重复计算很多次,而且记录本还可以方便我和合作者分享方法和结果。

——Matteo Falessi,意大利ENEA弗拉斯卡蒂研究中心等离子物理方向博士后

如果没有详细的实验记录,想要追溯之前的数据就像考古一样,而一份详尽的实验记录可以帮你快速地了解之前出于什么目的做了哪些实验,重新审视原来的数据并发现新的亮点,或者帮你重拾之前的工作。更高层次上来讲,一份好的实验记录可以保证实验的可重复性,证明实验是按照清晰的逻辑顺序操作并且符合伦理规范的,或者证明为什么实验需要如此设计。

——Caroline Lynn Kamerlin,瑞典乌普萨拉大学结构生物学教授

如果你是在实验完成几个月甚至几年后写文章,实验记录本则包括了用来写方法和结果的所有细节。在你职业生涯的某些阶段,你可能需要提供证据来证明某个想法真的是你首先提出的或者你拥有某项知识产权。此外,如果面临学术不端的控告,你的实验记录本将是强有力的证据。总之,实验记录本就像是职业生涯的账本,也是你作为科学家的财富,千万不要忽略它!

——Jeremy C. Borniger,加州帕罗奥多市斯坦福大学神经科学方向博士后

你是用传统纸质的记录本,还是电子版,还是都有?

我喜欢用纸质的记录本,尽管我产生的大部分数据都是电子版的,我还会偶尔在文档里记录下技术细节,比如显微镜的拍照参数、哪些实验结果合在了一张图里,这样我就能方便地找到,但传统的纸质记录本最大的缺点就是不好搜索,所以我会把记录本的前几页列成目录,还会经常交叉参照我的电子数据文档。

——Kitaoka

我觉得电子版的实验记录比纸质版好太多了,搜索很方便,可以轻易地调取几年前的实验记录或者梳理一遍找到关键细节;也不会因为不小心打翻酒精而毁掉;只要你备好份就不会丢,而且需要脱掉手套在电脑前写,所以也能强迫我腾出专门的时间用心来写。

——Bartman

在我刚开始科研事业的时候我都是用纸质版的记录本,但后来我调整了我的策略,因为我完全迷失在那些页码里。现在我只在做实验的时候在纸质记录本快速记下一些点,所有优化后的实验步骤、原始数据和分析结果都存在电脑里,我会分别利用笔记本上的日期标注和简短的实验描述来交叉参考纸质版和电子版的实验记录。此外,我发现另起一本记录本来记一些更加宽泛的事情非常有用,比如将实验概念化、起草初稿、组织会议或者记会议笔记等。

——Karine Salin,法国IFREMER环境生理学方向研究员

我在纸质版上更容易产生新的想法,所以一开始我只用纸质版的实验记录本,但我同时做好几个项目,需要很方便地查到每个项目才行,所以我现在喜欢用电子版记录本比如Evernote,可以添加纸质笔记的快照、编写脚本和其它电子版的文件、图片,而且可以在手机上装上APP,这样如果我在走路的时候突然有了好的实验想法就可以立即把语音录下来。但是电子版记录也有缺点,如果你忘了是什么内容,翻一下纸质的记录可能就找到了,但在电子版记录里你可能根本不知道应该搜什么。我后来克服了这一问题,记笔记的时候我会加上“自由”标签,记下任何似乎跟实验不太相关的想法和未来可以探索的问题,时不时地回顾一下,激发我的灵感。

——Ferro

通常,纸质版的记录本就足够了,但我会把所有的笔记做电子备份,要么用Genius Scan软件拍照,要么写到word文档里。我还会在电脑里建一个文件夹,存着所有的实验步骤,这样每次做实验的时候查看起来很方便,也不用每次都在实验记录本上写一遍。此外,我会给每个科研项目准备一个活页夹,外面写上标签,里面放着一些不方便放在实验记录本里的东西,比如说excel表打印件、图表数据、合同和材料转让协议。

——Borniger

我在Org-mode上记笔记,这是一种针对简单插入各种手写材料如结果、计算过程、公式、表格、参考书目甚至代码而专门设计的标记语言,笔记本身有链接的纯文本文件,所以当我需要写文章的时候我可以直接把这些文本文件转成LaTeX文件就能作为初稿。

——Falessi

我主要用电子版笔记,但在实验室的时候我会先写在本上,千万不要随便拿张纸,然后我会把纸质的记录本扫描保存,这样我就可以随时随地查看了。我用Confluence作电子记录,但微软的OneNote也非常好用,因为脱机或者联网都可以用而且软件也是免费的。我会利用纸质版笔记的页码和电子版文档的日期、实验名称来交叉参考。所有的实验步骤我都会存成电子版,包括实验设置、材料、仪器的照片,有时我还会录下自己描述整个实验步骤的视频。我的原始数据会存在实验室的服务器上,在云端或者硬盘上备份;处理分析数据的代码会存在Github上,一个很有名的软件项目托管系统;我还会在电子版实验记录上列出要做的事情,这样顺便也可以帮我记录我每周都做了什么。

——Lina Colucci,剑桥市麻省理工学院健康科学和技术方向助理研究员,旧金山湾区数据咨询师

你会采取什么策略来保证实验记录有条理、完整并且实用呢?

我的策略就是要把记笔记作为一步重要的实验步骤。我通常会边做实验边写,偶尔会在实验前写好步骤或者我要做的几点,然后实际做的过程中如果有变动的地方我会记录下来,所以记实验记录其实像做饭一样,在做饭的同时收拾总比等盘子堆到天花板了再收拾好得多。尽早记笔记还可以防止遗漏重要信息或者引入错误。

至于条理性,我就是简单地按照时间顺序来记录,所以每页都是新的一天(除非当天有很多页)。我会写得非常详细,我做了什么、为什么这么做、怎么做的、日期、时间、地点、和谁一起、有无特殊环境(比如火灾警报是否可能影响实验结果)和我的签名,甚至可以的话会让在场的人签名(我的导师或者实验室的伙伴)。所有这些都要用钢笔清晰地记录在本子上,即使写错了也不要涂掉,把写错的地方划掉,这样就能看到原来的字迹。你还可以在本子上记下你的想法,这也是可以的,其实也是应该被鼓励的

——Borniger

在我的实验记录本里,每个实验都是连续的几页,因为如果几个实验混着记录会变得非常难找。如果我同时做了好几个实验,我会给每个实验留出空白页,这样每个实验的步骤和笔记就是连续的,需要一连做好几天的实验也是如此。细节决定了记录的好坏,所以我会尽量简洁,但始终要保证尽可能把相关细节都记录下来。

——Kitaoka

我对我的学生说过他们不必按照统一的格式来记笔记,只要他们写的够详细,自己容易找到就可以,但我会要求他们在做之前尽可能把能写的都写下来,然后在做实验的过程中指导他们学会记录,因为他们经常会不小心跳过一步或没按步骤的顺序做,所以记录下来很重要。刚开始的时候你可能需要在笔记本上写很多,包括如何设置、如何操作的,但有经验了以后再做,你就只需要记下改动的变量就可以了。永远都不要到处乱记然后事后又抄到一起,这样难免会丢掉一些信息。

——Danielle Solano,贝克尔斯菲市加利福尼亚州立大学化学与生物化学系主任、副教授

记实验笔记最难的地方在于决定什么时候详细地写,什么时候可以粗略地写。我一般会先写得相对简单一些,记下实验的日期、时间、地点、参数、数据存放的位置或者如果我用到代码的话,还要记下脚本的名称和Github编号。随后,如果我发现这个实验还没完成,我会写一份更长的报告记录下此次实验的目的、假设、数据收集的日期、数据链接、分析脚本、数据收集当天的笔记、完整的实验步骤、实验设置的图片记录或者视频记录、结果结论以及下一步计划。

我的实验记录是按时间顺序写的,每页都有日期,我还会标出实验地点和笔记。如果我在本子里粘了些东西,我会在旁边签上名字和日期。如果我哪天改动了一些内容,我也会在旁边签名并写上改动的日期。对于电子版的实验记录,我设置了每天自动备份。

——Colucci

每天开始实验的时候,我会在Evernote上新建一页笔记,写好日期,然后把一天的过程开始往上添加,纸质版的笔记会拍快照上传,随后在APP上整理。每天收工的时候,我会花15分钟过一遍当天的笔记,如果有因为写的太快而不合适的词就改一下,如果还有其他的图片和分析都添上,再加上一些感想,最后给当天的笔记加个合适的标签。

——Ferro

我的记录本里有两部分内容非常重要,一个是做过几次实验之后自己整理完善后的实验步骤,另一个是实验过程记录。关于后者,我会在做的过程中把要点和观察到的东西先写在便条纸上,然后再在电子版的记录里按照条理写下来。本身做完实验之后可能就很累了,这时候还要记笔记着实很烦人,但这的的确确是最重要的一步。如果我实在要拖到明天,我会在桌上专门清出一片地方,放好我的笔记,这样第二天我一来就可以更新实验记录了。

——Bartman

其他建议?

我强烈建议大家在科研生涯的初期勇于尝试,试验一番你才能最终找到最适合自己的记录方式。好的记录方式应该简单方便、易于备份,说到这,其实没有任何一种方式会是完美的,所以你需要多尝试,但最好别超过三到四种。我通过一段痛苦的经历意识到了这一点,如果你用的工具太多,你的数据会异常分散,当你需要查找的时候自己都找不到。

——Colucci

在我看了实验室之前成员的实验记录本之后,我发现除了实验步骤和犯错经验,还有一些内容也是应该记下的,而且语言描述的准确、详略程度直接决定了后续是否容易重复出来这个实验,如果缺少细节的话会很愁人,所以我会格外注意,希望后续实验会尽量顺利一些。

——Kitaoka

只要你不违反规则,按照自己的方式行事完全没有问题。我之前呆过的一个研究所就有自己的要求,但是我更喜欢我自己的方式,所以我还是用我原有的方式,然后每周把我的工作记录变成他们要求的格式。虽然看上去增加了工作量,但我宁愿这么做,要不然我就没法保证连续记录,对我自己、我的实验室甚至研究所来说都是严重的损失。

每天都要记录做了什么看上去很琐碎,但也可以帮你调节心情。科研项目总是起起伏伏,可能低谷的时候还更多,有时感觉沮丧无助也是家常便饭,回头翻一翻记录本还能让你全面审视一遍,意识到自己其实已经做了很多。

——Ferro

比起做实验,记笔记总是容易被忽视,但它真的真的很重要,尤其是供你归类、查阅信息。养成好的习惯什么时候都不晚,所以,请重新考虑一下你记实验记录的方式吧。如果你需要改变,请从今天就开始做起!

——Kamerlin

怎样选择一个合适的Cas9?

Considerations when planning your Cas9 experiment

When choosing the Cas9 nuclease for your experiments, there are three important factors to consider: site accessibility, specificity, and sensitivity.

Site accessibility
Site accessibility is a measure of which genomic sequences can be targeted by the Cas9. This is determined by the PAM sequence recognized by the nuclease. For the most frequently used Cas9, spCas9 from Streptococcus pyogenes, this sequence is 3’-NGG. But Cas9s found in other species can recognize a variety of different PAM sequences. Researchers have also used experimental evolution to develop Cas9s that have a broader PAM specificity, allowing for the targeting of sites that were previously unavailable.

Specificity
Specificity is the assessment of the off-target activity of Cas9. This can occur when Cas9 cleaves a site that is not a perfect match to the guide RNA (gRNA) used to target the genomic locus of interest. As these off-target effects can be genome-wide and, in some cases, difficult to determine, the potential for off-target cleavage should be an important consideration during any experiment.

Sensitivity
Cas9 sensitivity is often closely related to specificity. Sensitivity is a measure of the on-target activity of the Cas9 nuclease. This can be determined by measuring the indel frequency at a target site. A specificity ratio can be measured by calculating the on-target activity divided by the off-target activity.

Cas9 nucleases that exhibit enhanced site accessibility

In order to generate a genomic alteration at a specific location, it must be accessible by Cas9. Our previous blog post The PAM Requirement and Expanding CRISPR Beyond SpCas9 described the PAM specificity of Cas9s isolated from different organisms and engineered Cas9 variants that were able to target different PAM sites (NGG, NGAN, NGNG, NGAG, and NGCG). Since then, the Osamu Nureki Lab described a rationally engineered Cas9, SpCas9-NG, which required only the di-nucleotide PAM NG (Nishimasu et al., 2018). The David Liu Lab similarly described xCas9, which displayed the ability to target multiple PAM sequences (NG, GAA, and GT), greatly increasing the number of genomic loci that can be targeted (Hu et al., 2018).

These altered variants can allow for targeting of your genomic loci of interest that may not be accessible by wild-type Cas9, due to its stringent PAM specificity. This can be especially important for base editing techniques, where Cas9 must be directed to a very specific site.

Specificity vs. sensitivity in choosing the Cas9 to use in your experiments

Another important consideration when choosing a Cas9 is balancing specificity and sensitivity. Wild-type Cas9 exhibits high on-target activity, but also high off-target activity, which may be undesirable in many applications. At the time of our first blog post on choosing a Cas9, the Feng Zhang Lab had described eSpCas9, while the Keith Joung Lab had developed SpCas9-HF1. Both of the enzymes showed decreased off-target activity relative to Cas9. Since then, the Joung and Jennifer Doudna Labs used targeted mutagenesis to generate hyper accurate Cas9 (HypaCas9). This nuclease showed decreased or similar off-target activity, relative to eSpCas9 and SpCas9-HF across a number of different sites. Using a combined random and directed mutagenesis approach, the Anna Cereseto Lab created pX-evoCas9, which they showed also increased specificity.

Most recently, the Jungjoon Lee Lab used directed evolution to generate Sniper-Cas9 resulting in a Cas9 with improved specificity. They compared on-site and off-site activity of Sniper-Cas9 to different Cas9 variants using gRNAs of different lengths (Lee et al., 2018) and found that Sniper-Cas9 showed a high degree of both specificity and sensitivity across a large number of loci and gRNA lengths.

Recent alternatives to Cas9

While Cas9 remains the most widely used CRISPR nuclease, recent work has shown that alternative enzymes may better suit specific experimental approaches. One example is CasX, characterized by the Oakes and Doudna Labs, which is both small and potentially less likely to elicit a strong immune response, factors that may make it especially suitable for in vivo research and potentially treatments. Cas12b, characterized by the Zhang (Strecker et al., 2019) and Li (Teng et al., 2018) Labs also shows promise for in vivo research due to its small size and specificity relative to Cas9. As scientists continue to characterize CRISPR nucleases from a variety of sources, it is likely that the toolkit available to researchers will continue to expand.

Final thoughts

Since the first use of Cas9 to engineer the genome, there are more and more Cas enzymes and variants to choose from. While no enzyme is perfect for all experimental approaches, knowledge of both the advantages and limitations of each Cas enzyme can help determine which enzyme to use. Remember, accessibility, specificity, and sensitivity are key considerations in choosing a Cas protein for your experiment.

References

Hu, Johnny H., et al. “Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.” Nature 556.7699 (2018): 57. PubMed PMID: 29512652. PubMed Central PMCID: PMC5951633.

Lee, Jungjoon K., et al. “Directed evolution of CRISPR-Cas9 to increase its specificity.” Nature communications 9.1 (2018): 3048. PubMed PMID: 30082838. PubMed Central PMCID: PMC6078992.

Nishimasu, Hiroshi, et al. “Engineered CRISPR-Cas9 nuclease with expanded targeting space.” Science 361.6408 (2018): 1259-1262. PubMed PMID: 30166441. PubMed Central PMCID: PMC6368452.

Strecker, Jonathan, et al. “Engineering of CRISPR-Cas12b for human genome editing.” Nature communications 10.1 (2019): 212. PubMed PMID: 30670702. PubMed Central PMCID: PMC6342934.

Teng, Fei, et al. “Repurposing CRISPR-Cas12b for mammalian genome engineering.” Cell discovery 4.1 (2018): 63. PubMed PMID: 30510770. PubMed Central PMCID: PMC6255809.

为什么每年夏季草坪草容易大面积发黄枯死?

每年夏季6~8月份,很多草坪养护管理者开始对草坪发黄枯死的问题而犯愁,因为有时候草坪发黄枯死是在短短的一晚或者几天时间内大面积发生,如不及时防治,不仅会对您造成损失,更会大大降低景观效果,枯死的草坪是不能恢复的,通过多年的草坪养护经验我们了解到,草坪发黄枯死一般是由于以下三个原因引起。
一、大幅度修剪造成的枯死
为了降低维护成本,长时间不修剪草坪,等草坪生长过高时一次性过度修剪。由于七八月份温度很高,一次性修剪过度,草坪密度过高,再加上水分供应不上,草坪很容易枯死。一般这种情况是在修剪后发生,并且是大面积发生,特别是地势较高的地方草坪枯死更为严重。
针对修剪造成的枯死解决方法:
修剪时遵循留三指的原则,所谓留三指是指手掌横放草坪修建过好和三指想平即可,如果草坪长的太高,建议一次不要修剪太低,造成草坪无法进行光合作用,而导致草坪整体素质下降,可以采用勤修剪的方法,并且修剪后需要及时对草坪进行灌水。夏季草坪可以适当提高修剪高度1-2公分左右。冷季型草坪建议修剪高度(留茬高度)4-6cm;暖季型草坪建议修剪高度3-5cm。
修剪技巧:
1、修剪时间:建议在早晨露水干后修剪,以减少因伤口和露水同时存在时增大了病菌入侵的机会。
2、每次修剪时,要保证剪草机刀片锋利,以免草坪叶片被撕裂拉伤,影响草坪的美观性及滋生细菌。修剪后及时喷施绿盾、广菌灵等杀菌剂,避免通过修剪伤口感病。

二、草坪发生病害引起
草坪草发生病害引起发黄枯死一般会有一个发病的过程,并且在发病的位置早晨早起会发现有菌丝体。那么如何快速判断是否由于发病引起的呢?草坪病害80%以上为真菌引起。而且在形成病症之前会形成一些肉眼能观察到的菌落与颜色。所以在早晨5点容易观察到菌丝体等。
首先观察病叶;因为叶梢为草株的生长点是草株最幼嫩的部位,最容易受到病菌的侵害;叶部经常修剪,修剪的伤口容易受到病菌侵害;七八月份常见的草坪病害有褐斑病、夏季斑、腐霉枯萎病、镰刀枯萎病。
了解形成大圆形病斑的病害
草坪上的死斑在30cm以上,大的病斑可达3-4m,病斑呈现大略圆形。主要病害有:褐斑病、全蚀病、镰刀枯萎病等。
了解形成小圆形病斑的病害:病斑直径在2-20cm,呈圆形。病害不能及时控制,小的病斑会蔓延,相互结合成不规则的大块病斑。主要病害有:红丝病、腐霉枯萎病、币斑病。
病害引起的枯黄解决方法:
在养护过程中少施氮肥,在夏季尽量不要施尿素。如有施肥需求建议喷施绿润等叶面肥,一旦发现病害及时喷施草坪喷克菌、腐霉定、草病消等草坪专用杀菌剂,建议间隔5-7天重喷一次。
夏天草坪养护的方法
1、夏季浇水随着温度升高,必须及时调整草坪的浇水频率,以防草坪干枯、泛黄。在多风、炎热和干燥天气持续时间较长的情况下,每周应在正常浇水频率基础上适当增加浇水次数。浇水时间不固定会使草坪更易于受损。
2、适当浇水:浇水不足可能削弱草坪的抵抗力,使草坪易染病害并受杂草侵袭。浇水过多则会造成草坪缺氧。从而导致生理疾病及根部受害。应充分利用灌溉或降雨。确保处在生长期的草坪能获得足够的水量。
3、环保施肥:对草坪施肥应注重环保。施肥后,应及时清除洒落的化肥并清扫车道,以防洒落化肥随雨水或其他途径流进入街道和下水道,从而造成水路污染。
4、点缀草坪:如果希望在草坪中修剪出类似专业棒球场中“条形”或“块状”图案的草坪,可通过“往返修剪法”实现。采用“往返修剪法”修剪草坪可以将叶片向相反方向弯曲,使阳光朝不同的方向折射,从而形成草色的区别。
5、草坪松土:草坪松土可使用专用通气设备,但通气过程比较慢。如果草坪不存在土壤板结和枯草问题,不必为草坪通气。
6、控制阔叶杂草:蒲公英等阔叶杂草出现在春季,一般可用专除阔叶杂草的除草剂进行清除。在专除阔叶杂草的除草剂中,液态药剂比颗粒剂使用更方便。
7、回收碎草:与其丢弃剪下的碎草,不如通过使用碎草式剪草机或增加修剪频率对碎草进行回收利用。这些碎草非但不会形成枯草层,还可为草坪提供宝贵的养分,从而减少施肥量。

三、斜纹夜蛾蛴螬等害虫引起的枯黄
夜蛾、草地螟、地老虎等害虫会把叶脉及嫩茎吃光,阴雨天昼夜咬食危害。轻者造成草坪发黄,如不及时防治,严重时会造成草坪整片死亡,严重影响草坪的观赏和正常生长。高龄幼虫在草坪根际活动虫多,虫粪较明显,多在早晚和夜间取食。5至10月份均有此虫危害。幼虫白天、夜间均取食,以夜间为主。白天栖息于草坪草的叶背、根茎部或贴近土壤潮湿处。高龄幼虫在草坪根际活动虫多,虫粪较明显,多在早晚和夜间取食。
淡剑夜蛾引起的枯黄解决方法:
1、结合修剪草坪,喷洒叶虫净+狂杀,每瓶200毫升兑水160公斤水,喷湿草坪草,建议5-7天在喷施一次。
2、撒施地害平颗粒,每亩用药2-3公斤,注意施药后记得及时浇水。
3、记得傍晚用药效果更好。
4、保护蛙类、鸟类等天敌。
蛴螬主要危害草坪草根部,危害后草坪很容易被提起。蛴螬引起的枯黄解决方法:
草坪修剪后2—3天,2kg-4kg/亩地害平或坪安复方药肥在下午4点之后均匀撒施,然后浇水。本剂含有惰性载体,不会一次性释放,需要3—4次,持效期1—2个月。撒施时要求使用橡胶手套。

四、常见草坪管理的错误

1.草剪得太低
以为把割草机设置到最低高度可以省事又省力?NONONO!
大多数草应该剪到2.5到3.75英寸到高度。如果你把草坪修剪到1英寸,会让草坪觉得“饥饿”:草坪不会吸收足够的阳光来成长。将草留的长一些,会让草向下生长深根,吸收更多的水分。

2.割草机刀片不够锋利
当你在修建草坪的时候,你要确保你的割草机刀片是锋利的。不够锋利的割草机刀片会把草绞碎,而不是干净利索的割断,留下参差不齐的边缘,看起来凌乱不堪,让你的草更容易受到疾病和害虫的侵害。

3.浇水时间不够长
大多数草每周需要1到1.5英寸的水。当草坪在一次漫长,缓慢的灌溉过程中获得足够的水分时,它们会更健康—–对于大多数灌溉系统来说,这大约需要20-30分钟。如果你只是每天打开洒水器10分钟,水不会流到草的根部,很多水在草有机会吸收之间就蒸发掉了。

4.浇水时间错误
为了确保水到达草地,并将蒸发损失降到最低,最好在早晨太阳升起,温度升高之前浇水。晚上浇水会增加病虫害的几率,也不要一出太阳就冲出去浇水。当感受到轻微的干旱时,草的根会长的更深。

5.没有使用正确的肥料
草坪肥料一般有三种类型:
快释 (fast-release)
缓释 (slow-release)
堆肥(compost)。
快速释放肥料会使你的草很快变绿,但它很容易挥洒不均匀,导致斑片状,块状生长;也可能会因为它效力太强而损坏草坪。
缓释或控释(controlled-release)更温和并容易使用,而且不太可能烧草。但是它的成本较高,可能需要一段时间才能看到结果,缓释化肥的作用很像有机肥,通常是由植物和动物的成分制成。
堆肥(compost) 可以增加土壤的养分和有机物,帮助土壤在干旱时保持水分。堆肥最好在秋天第一场霜冻下来前施入草坪, 这时的草坪高度可以在1英寸左右比较合适。

6.肥料使用太多
肥料的释放是有一定配比的。 使用过多会伤草, 并且多余的肥料会被雨水冲走,浪费金钱,污染当地当的池塘和小溪。 请严格按照肥料包装袋子上的说明去做。

7. 你还没有做土质检测
很难判断你的草坪看起来是否松软,因为他没有足够的氮,磷或钾,或者在浇水之前没有足够的有机物来保持水分。与其把钱花在可能没用的肥料上,不如做个土壤测试。
8. 种植了错误的草种
草坪一般有两种类型:
冷季草(cool season grasses)
暖季草 (warm season grasses.)。
冷季草在冬季休眠之前保持很长一段时间的绿色,但如果不经常浇水,它们在夏天会变成棕色。它们在40°F到45°F的温度下开始生长,在65°F到75°F的温度下生长最好。这些草可以忍受一些荫凉,但至少需要半天的日照。
暖季草在春天晚些时候“变绿”,在初秋休眠(变成棕色),但它们整个夏天都保持绿色。它们只有在温度计达到60°F到65°F时才开始生长,在90°F到95°F时生长最好。他们不能忍受阴凉处。
草坪的最佳选择取决于你住在哪里,以及你想在夏天花多少钱浇水。

9.你扔掉了草屑
在过去,每家都会把剪下来的草打包,和院子里的垃圾一起扔掉。但是研究表明,只要你剪下的草不超过草高的三分之一,最好还是让它们落回草坪上。因为其中百分之75%到80%都是水分,所以会很快分解,不会形成茅草,而且还有把氮和有机物返回到草坪上,从而减少对肥料的需要。

10.错误地除杂草方式

如果你拿着一瓶除草剂在草坪上走来走去,看到杂草就喷,那你就错了。
正确的方式是:
a. 如前面所说的,土壤施肥要先做好。防止杂草比在杂草出现后清除杂草容易得多。清除杂草的最好方式是确保你的草坪修剪的高而健康,使用适量的肥料/堆肥,土壤有机质,水和草籽混合物。
b. 早春在土里拨入pre-emergence herbicides。 也就是说在早春, 杂草还没长出时, 就及时做抑制。 pre-emergence herbicides里包含一种有机物质叫作corn gluten, 可以抑制90%的杂草。
c. 常见的杂草Crabgrass:这种杂草比较喜欢阳光, 如果你院里的草割的太低(低于2英寸), 就会滋长这种草的生长。
d. 有的杂草需要手拔:比如 tall fescue这种杂草就需要手拔, 因为能除 tall fescue的除草剂往往会把草坪的好草也出掉。

Nanopore测序文库制备技巧

Nanopore is a relatively new sequencing platform and researchers are still trying to optimize the protocol for their own specific applications. In our lab, we work primarily with metagenomic samples and use the 1D sequencing kits. Over the past year, we have optimized this technique. To check the quality of the Nanopore library preparation we check between steps using Qubit and Nanodrop measurements. Nanopore library quality mostly depends on the individual researcher’s technical skills and pipetting technique. In this article, we discuss some pointers to perform a successful NGS library preparation for metagenomics sequencing on the MinION platform.

Use High-Quantity Starting Material

The recommended starting material for DNA sequencing is <1 ug. However, we have observed in our experiments that with a little higher quantity (around 1.5 times) of DNA, the final library concentration will be within the desired range. It is a well-known fact that higher the library concentration the better the sequencing result. We have observed the same with our own experiments. Nevertheless, it is not always easy to get high quality DNA in sufficient concentration. Pooling of samples, if possible, can be done totry and improve the concentration. Alternatively, you can use PCR followed by purification of desired bands using gel extraction kits.

Use High-Quality Nucleic Acids

We recommend using a fluorometer to measure DNA/RNA concentrations as Nanodrop readings for concentration is not always reliable. However, the absorbance ratios at 260/280 and 260/230 measured in Nanodrop are very useful. The 260/280 ratio for DNA should always be in the range of 1.7 – 1.9. The closer it is to 1.8, the better the results. The 260/230 ratio should higher than 2.0. For RNA, the 260/280 ratio should be around 2.0 and the 260/230 ratio should be above 2.0. Read more about the strengths and limitations of your nanodrop.

If possible, the quality of DNA/RNA should also be measured using Bio-analyser/Tape station along with traditional methods. As there are no steps to check the quality once the library preparation starts, it is better to start with a high-quality sample rather than searching for issues in case of poor sequencing data. Real time PCR kits are available to check library prep quality but this adds to the cost and time of experiment.

Consider the optimal DNA fragment size

The DNA fragment size also impacts the quality of the sequencing reads and we spent a lot of our time determining the optimal fragment size for Nanopore sequencing.

We found that the optimal size was between 3 Kb and 8 Kb. Fragments smaller than 1-2 Kb greatly reduced the overall sequencing quality, whereas higher molecular weight DNA fragments (10 Kb to 40 Kb which are common in manual DNA preparations) do not interfere with overall quality of data. Some Nanopore users have reported clogging of pores when using high molecular weight DNA and recommend the new flow cell wash kit to revive the clogged pores and prepare for the next run. Flow cell washing is recommended after every run and latest kit supposedly gives better yields when combined with a nuclease flush step.

The objective of Nanopore is long read sequencing but how long the reads should be (< 10 Kb or >10 Kb) is up to the scientist to decide depending on their individual experiment parameters. It should be noted that the overall fragment size distribution among all the samples in a single batch should be similar. Fragment length normalization and optimization will help to reduce the sequencing bias of heterogeneous samples. Steps should be taken to maintain a uniform fragment length distribution and should be normalized across samples. Fragment size also affects the efficiency of PCR barcoding steps. Longer fragments are difficult for PCR barcoding. End prep is another important step. Barcoding step affects the overall outcome of the sequencing. Insufficient barcoding leads to loss of valuable data.

Increase Your Incubation Times

We have observed that incubating the samples with beads for a longer duration gives better results. After mixing with the beads, we left the tubes idle for twice as long as suggested by the manufacturer’s protocol.

Use Fresh Beads

AMPure XP beads utilizes an optimized buffer to selectively bind DNA fragments 100 bp and larger to paramagnetic beads. Excess primers, nucleotides, salts, and enzymes can be removed using a simple washing procedure. Prepare fresh 70% ethanol each time to avoid dilution effect upon reuse due to the hygroscopic nature of 70% ethanol. We found that this simple step dramatically improves the bead utilization.

Minimize Tube Changes During Nanopore Library Preparation

We would recommend not transferring DNA from one tube to another unless it is absolutely necessary. For example, when eluting DNA from beads, you must collect the eluent in a fresh new sterile tube. This is primarily to avoid loss of sample during library preparation. The tubes and tips are not completely resistant to liquid sticking on the walls, and we feel it is better to avoid this rather than to try and retrieve the lost sample. Good pipetting practices will help you to minimize volume loss during such transfers. Additionally, we recommend using DNA LoBind Eppendorf® tubesfor all the steps.

Mix Your Samples Thoroughly… but Carefully!

The tube contents and reagents should be mixed properly. Even though vortexing is not recommended, light vortexing can be done in the initial steps. The most appropriate method for mixing is flicking the tubes. Pipette mixing can also be done, but this is not recommended as repeated pipetting may result in shearing of the DNA fragments affecting the size distribution. Again, proper pipetting skills are required to ensure that the sample is processed optimally.

Optimize Your PCR

In our experiments, we have observed that for PCR barcoding, the number of cycles can be doubled to 30 cycles. We did not get enough output with the recommended number of cycles (12 to 15 cycles). This may vary depending on the sample type and protocol but there is no harm in programming additional PCR cycles. Always check with Nanodrop and Qubit before and after such procedures to ensure consistency.

Prep Your DNA Before Ordering a New Flowcell

One of the major problems that we faced, other than the issues in Nanopore library preparation, was lower pore count of the MinION flowcell. Even though the company claims that there are 2048 pores, by the time we receive the flowcells, the count of pores is down to less than 1400. Having fewer pores directly impacts the quality and quantity of sequences/reads in the output. As the number of pores reduces, so does the confidence on the quality and quantity of the output data. Every day we lose a bunch of pores as these are biological and not chemical in nature and the longer the flowcell sits in the fridge the lower the capacity. So, we highly recommend preparing your DNA samples first – before ordering a new flowcell. As soon as you receive it, you should be able to start the experiment right away.

Make Sure You Have a Good Internet Connection

It must be noted that the most recent MinION flowcell can generate 30 GB raw data and close to 5 GB FASTQ data after basecalling. We have confirmed these numbers from our own experiments even at low pore counts of 1500 per flowcell. You need a high-speed broadband internet connection for real time basecalling. We recommend this approach as you can continuously monitor the data generated and stop the run when sufficient data is collected. You can immediately wash the flowcell and prime it for the next batch. This way you can reuse the flow cells for at least three library preps making it more economical compared to other sequencing platforms.

Common Practices to Keep in Mind for Nanopore Library Preparation

While working on the various experiments with Nanopore MinION, we figured out that the following practices greatly improved the final data output from sequencing:

  • The working bench, pipettes and all the consumables should be clean and dust free.
  • The reagents stored in -20°C should be thawed on ice before use and should be immediately returned to the proper storage area (-20°C) after use – use an ice bucket at all times.
  • The magnetic beads should be normalised to room temperature and resuspended properly before use.
  • As the library preparation protocols are not very long, try to finish the complete procedure within one day and start sequencing. Though there are steps after which the sample can be stored and the protocol continued the next day, it is better to avoid this scenario if possible.
  • Plan ahead of time to ensure all the equipment is readily available, start early and finish the entire process in one go without stops.

文章来源: https://bitesizebio.com/44244/get-prepped-nanopore-library-preparation-optimization/

病毒载体注射动物的基本方法

供大家参考。

1. 尾静脉注射

1. 提取小鼠尾巴,将其放在鼠笼盖或者手背上,并进行适当的安抚;
2. 将小鼠装入固定器中,盖紧盖子,并使尾巴朝外露出用酒精棉球擦拭小鼠尾巴或者用热水、浴霸加热,使其血管扩张;
3. 将尾巴拉直,使其红色静脉清晰可见;
4. 距离鼠尾尖1/3处进针,若进针畅通无阻,则说明针头在血管内;
5. 检查针管内有无回血,如有,则可以注射;
6. 用棉球按压注射点1min左右进行止血;
7. 最后,将小鼠从固定器取下,放回鼠笼中。

补充说明

1. 大鼠尾静脉注射病毒量参考:文章“AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats”中给出:6周龄的年轻成年大鼠重约150g。文中AAV9 TDP-43 or AAV9 GFP, 一个典型的剂量是每kg大鼠给药3 x 10^13 – 1 x 10^14 v.g。确保体积不超过标准建议注射量体积(250克大鼠250-500μL)。对于年轻的成年大鼠,推荐的注射体积是200μl。
2. 小鼠尾静脉注射视频: http://www.taogene.com“动物注射”板块观看。

小鼠尾静脉注射示意图

tailvain.jpg

2. 颞/面静脉注射

1. 将一只幼崽直接放在湿冰上30-60秒,以麻醉动物。由于存在低温相关并发症(包括心室颤动,组织缺氧和代谢性酸中毒)的风险,请勿将动物置于冰上太久。文章中告知,30-60秒足以减缓小鼠运动以允许注射。如果需要更深的麻醉,吸入剂如1-2%的异氟烷可能是合适的;
2. 当动物在冰上时,向注射器中加入30μl伊文思蓝染料;
3. 当动物完全麻醉时(仍然呼吸但在冰上缺乏运动),在显微镜下移动它。对于右手注射,请将对着动物的枪口朝向右侧。将左手食指放在枪口上,左手中指放在耳塞尾部,使耳塞位于食指和中指之间;
4. 检查耳朵前方的毛细血管,当皮肤被操纵时会移动。毛细管并不是目标,而是识别颞/面静脉识别很重要。接下来,找到毛细管下方的暗阴影静脉,无论皮肤位置如何,毛细管都保持固定。颞静脉呈阴影状,向腹侧背侧,并进入颈静脉;
5. 进入颞静脉,针斜面向上。如果正确插入,可以通过皮肤观察针斜角填充血液。然后慢慢压下柱塞,注意静脉沿着脸部侧面漂白;
6. 让针头在静脉内保持10-15秒,以防止注射剂回流。

图A:临时注射平台;图B:手指位置;图C:注射位点

640.jpg

说明:更多注意事项请参考文章“Intravenous Injections in Neonatal Mice”。

3. 腹腔注射

1. 从笼中提取小鼠尾巴,并将其放在手背上,进行适当安抚;
2. 左手握小鼠,用拇指、食指捏住小鼠颈背部,用无名指及小指固定其尾和后肢,腹部向上,头呈低位;
3. 右手持注射器,插入小鼠腹部,注射部位为下腹部离腹白线约0.5cm 处,使针头与小鼠腹部约成 30°角刺入腹腔,针头刺入的速度要快,刚开始刺时会有一种明显的抵抗力,那是因为鼠皮具有韧性,后来突然会有一种抵抗力消失的感觉,说明针头已刺入腹腔内,此时回抽没有回血,说明针头没有进入脏器,就可以进行注射。(注意:针头刺入腹腔不宜超过 1cm,进针动作要轻柔,防止刺伤腹部器官);
4. 注射完病毒后,缓缓拔出针头,并轻微旋转针头,防止漏液;
5. 最后,将小鼠重新放回笼中,继续饲养观察。

小鼠腹腔注射示意图

说明:小鼠腹腔注射视频,www.taogene.com“动物注射”板块观看。
4. 视网膜下注射

1. 通过腹腔注射安乐死和唑拉西泮(1:1,2.25 mg / kg体重)和盐酸甲苯噻嗪(0.7 mg / kg体重)或替代品的混合物麻醉成年小鼠(即6-8周龄);
2. 用0.5%的去氧肾上腺素和0.5%的托吡卡胺滴眼液扩张瞳孔;
3. 准备已经加有1.5-2μl病毒微量注射器;
4. 为了方便注射,打开眼睑,使眼睛露出赤道(equator),并在手术显微镜下观察。保持眼睛露出赤道(equator)直到注射结束,防止在注射期间可能发生针的移位。将手指放在眼眶边缘外以便牢牢握住眼球;
5. 在角膜表面涂抹一滴眼用粘弹性溶液;
6. 在角膜顶部放置一个小圆形盖玻片,以显示视网膜;
7. 使用30 G 1/2无菌针头在角膜缘后面的一个小孔处穿孔进行进一步的视网膜下注射。为了方便,是孔位于右眼的下方,左眼的上方;
8. 将微量注射器的33 G钝针穿过预穿孔并进入视网膜下腔,直到感觉到轻度阻力的点为止;
9. 将病毒载体(比如1×10^6TU /μl)轻轻注入视网膜下空间而不发生震颤,以避免不必要的组织损伤,然后轻轻取出针头;
10. 在手术显微镜下注射后观察视网膜下水泡的形成,以确保视网膜没有出血;
11. 轻轻关闭眼睑以覆盖注射部位;
12. 将小鼠放回笼中,保证小鼠活力。

641.jpg
更多注意事项请参照文章“Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium”。

5. 脑立体定位注射

第一部分:实验前准备

脑立体定位仪,常规手术器械,颅骨钻,微量注射器,干棉球,1% 的戊巴比妥钠,生理盐水,1ml 注射器,小鼠 。
首先,用 1% 的戊巴比妥钠,以腹腔注射的方式麻醉小鼠,注射量为 80mg / 100g 小鼠 ;
然后,从饲养笼中取出小鼠 。5-10min 后,麻醉剂起效 。待小鼠麻醉后,用剃毛器将小鼠头部毛发剔除干净 。

第二部分:固定小鼠
将麻醉小鼠剔毛后的固定到立体定位仪上 ;
固定时,先将小鼠门齿卡在适配器门齿夹上,轻轻压上门齿夹横杆,调整适配器高度和前后,使耳杆可以方便进入小鼠外耳道;
左手托起小鼠头部,将左侧耳杆插入小鼠耳道,调节左右侧耳杆使动物头部保持在 U 型开口的中心位置,先锁紧固定一侧耳杆,后旋紧另一侧耳杆,使动物头部不能晃动,同时旋紧门齿夹螺丝;
检查是否固定成功:鼻对正中,头部不动,提尾不掉,目测大脑放置水平。用脱毛膏或者剃刀将需要手术部位的毛发去除。
然后用手术刀划开小鼠头部皮肤,去除颅骨表面结缔组织,暴露前后囟。
根据脑图谱,确定待注射脑区的位置参数,包含离 Bregma 和 Lambda 点的距离以及核团深度。以 Bregma 为 0 点,按照预先确定好的坐标移动颅骨钻,打开合适大小的骨窗(窗口尽量小但又不妨碍实验)。
小心地用颅骨钻在注射位点处轻磨颅骨,将颅骨慢慢打薄,当颅骨出现裂缝的时候,用医用注射器的针头小心挑破,防止损伤,如果在此过程中有出血,可以用很小的医药棉球拉成长条形将血吸走,钻孔时一定要控制好,否则很容易在钻通颅骨后一不小心钻头进入脑组织,造成损伤。

第三部分:注射病毒
用 PBS 冲洗微量注射器 ( 5μl 规格 ) 3-5 次;
先吸取 1μl 空气,再吸取 1μl 稀释好的病毒 ( 方便病毒充分注射进脑 ),在空气中测试注射器是否通畅;
将微量注射泵,微量注射器组装好,置于钻好的孔上方,针尖与颅骨平行 (Z=0),微调注射器位置使之与之前钻孔时位置相同。根据定好的深度将注射针缓慢下降。
6. 肌肉注射

1. 限制动物,确保动物的一条后腿自由并稳定注射。固定动物可能需要两个人。如果动物在注射期间可以动,则针头可能会导致肌肉损伤。动物固定方法可以参考文章“Manual Restraint and Common Compound Administration Routes in Mice and Rats”;
2. 针应垂直于动物皮肤插入。使用适当大小的注射器和针头,近似斜面的角度将针头插入,并将材料注入动物的股四头肌(大腿前部)或大腿外侧肌肉块。不要注入后部肌肉,因为它可能会损伤坐骨神经;
3. 如果动物要接受多次肌肉注射,交替腿进行注射。

7. 皮下注射

1. 限制动物自由,但是需要足够松散,保证皮肤能够移动;
2. 如果动物在皮下注射后要做常规处理,请不要使用颈背,此时可以使用背侧臀部或侧腹的皮肤。如果动物要接受多次皮下注射,则换其他部位进行注射;
3. 抓住皮肤,轻轻向上拉,形成“帐篷”形状;
4. 使用适当大小的注射器和针头,将针头以30-45°的角度插入拉起来的皮肤,然后注射。注射保持于拉起来皮肤的手指平行且尽量远离手指;
5. 如果注射成功,将会看到皮肤下的小肿胀。注射结束后,轻轻施加压力以防止回流。

说明:小鼠皮下注射视频手机登陆www.taogene.com进入资讯“动物注射”板块观看。
8. 皮内注射

1. 对于皮内注射,通常将动物剃毛以便可以看到皮肤;
2. 用于多次皮内注射的动物的约束可能是困难的。在这种情况下,化学镇静可能是必要的;
3. 将适当大小的针头以15-30°的角度插入皮肤。针头不要插入很远,注射遇到阻力即可。另一种方法是在注射部位附近轻轻捏住皮肤,并以非常小的角度插入针头。这在小鼠中很有用,因为它可以防止它们在注射过程中移动;
4. 如果注射成功,将会看到一个小疱。它会比周围的皮肤更苍白;
5. 注射后,轻轻施加压力以防止回流。

9. 灌胃

1. 只对受限制的清醒动物进行强效灌胃。麻醉或镇静会增加误吸的风险;
2. 选择使用适当大小的口服喂食针。这些针头的末端有球形尖端,以防止它们进入气管。所需的长度可以将受约束的动物保持向上然后从嘴角开始测量确定;
3. 约束动物,使其头部和身体呈直线垂直,这会使食道变直,使喂食针更容易通过;
4. 将针的球形尖端插入动物的嘴里,并在舌头上方。一旦针头到达正确位置,将针头和注射器向上,轻轻按压上颚,使动物的鼻子朝向天花板。在给大鼠进行胃内给药时,针可能需要在通过喉咙后部时稍微改变方向,如果感受到针上的任何张力都表明需要调整位置;
5. 继续将针送到预定位置。针应该很容易通过,动物不应该喘气或呛到,如果有阻力或动物喘息或者窒息,立即停止并取下针头。

说明:小鼠灌胃视频,www.taogene.com“动物注射”板块观看。
10. 鞘内注射

1. 剔除小鼠腰背部毛发,用75%酒精棉球消毒;
2. 将小鼠引诱至棉手套中,左手固定小鼠,暴露髂脊背部,右手持29 gauge注射针,待其安静后找到髂脊。ICR小鼠L5椎间隙几乎与髂脊平行,L6椎间隙距髂脊水平距离约为3 mm;C57BL/6小鼠L5椎间隙距髂脊水平距离约为1.5 mm,L6椎间隙距髂脊水平距离约为4 mm;
3. 以30°-45°角度插入中线皮肤,髂脊水平向尾部约3 mm处进针(ICR小鼠)或髂脊水平向尾部约4 mm处进针(C57BL/6小鼠),若针不能插入L6椎间隙,进针角度缓慢下调,同时沿着棘突和乳突间的凹槽向前移动针尖,直到插入L5椎间隙,针尖可以进入到椎管约5 mm位置;
4. 针尖进入椎管推入10 μL药液,小鼠尾巴颤抖或突然甩动则证明进针成功;

说明:此方法成熟稳定,无麻醉剂影响,不影响后续行为结果检测,对小鼠产生刺激较小,可尽量减小对实验结果的影响。
11.脊神经内注射

1. 健康小鼠在做脊神经结扎前1天禁食禁水;
2. 实验时,将小鼠背部毛发剔除,暴露出皮肤,用异氟烷呼吸麻醉;
3. 待小鼠进入麻醉状态后 ,用碘伏消毒后再用75%酒精棉球消毒,用11号刀片划开小鼠皮肤,具体位置为髂脊中线偏左。开口大小一厘米左右;
4. 接下来,在腰背部中线偏外侧划开,用弯镊沿脊柱方向钝性分离肌肉,暴露第六腰椎横突后,用棉球将横突周围血肉擦拭干净,使用尖镊钳断横突,暴露出神经,使用玻璃电极分离出第五腰神经,用6-0丝线结扎,使用微量注射器沿神经方向在神经外膜下进行注射;
5. 注射时注意速度缓慢匀速,随后剪去线头,将神经回复原位置,缝合肌肉,用碘伏消毒,最后缝上皮肤,再次消毒伤口;
6. 将小鼠放置温暖处待其苏醒。

注意事项:在手术过程中密切注意小鼠呼吸情况,防止小鼠呼吸过深死亡。

如何为杂志撰写综述文章

1. Understand your audience
Even before you start writing, make sure you have a good sense of who is going to read the article. It may sound like an obvious point, but keeping a consistent tone throughout the manuscript is going to save you a lot of time in revision. Is this a tutorial review, aimed toward people who are totally new to the field? You’ll want to include lots of context and define terms that may seem obvious to you. A historical perspective? Don’t be afraid to dig far back in the literature to the seminal publications. A digest or highlight piece? Worry less about assembling every single paper on the topic and focus more on what the most interesting handful of results say right now.

Pengfei Kong, editor of Trends in Parasitology, suggests thinking about the scope of the review as a function of the expertise of the audience: if it’s meant for readers actively engaged in a specific field, then you can go deeper, whereas if you want it to be more accessible to a general audience, you should go wider. Former Cell Stem Cell reviews editor Anh Nguyen also advises you to “make sure your article has the type of breadth and depth that the journal typically publishes.”

2. Understand what the journal wants
Most journals, including the Trends journals, have a dense array of author guidelines that provide instructions on everything from how to format a glossary (put each term in bold the first time it appears in the main text) to how long an abstract can be (strictly no more than 120 words for longer formats and 50 words for shorter formats) to how to prepare print-quality figures (300 dpi, .tif format preferred). These items are important and may delay or preclude publication if they’re not followed, but they’re things that can be addressed as you’re polishing a manuscript for submission.

Before you start writing, though, get a general sense of what the journal expects from you. In particular, Trends in Pharmacological Sciences editor Kushi Mukherjee emphasizes how understanding the journal’s length requirements before you start writing can prevent significant frustration later on. Trends journals advise submitting Review articles between 3,000 and 3,500 words on initial submission. If you keep this goal in mind from the beginning and end up a few hundred words long or short, then it’s relatively straightforward to cut or add to reach the appropriate length. But if you choose to ignore the instruction and end up with a 9,000-word albatross, then you’ll have to discard 60% of your effort, in many cases before the journal will even send your manuscript out for review.

3. Figure out what you want to say
Danielle Loughlin, editor of Trends in Cell Biology, puts it well: “First, define the overall goal of the manuscript. What do you want to convey to the reader? What are the major points that you want to make?” Claudia Willmes from Trends in Molecular Medicine agrees: “Start with the motivation for why you’re writing this review and make sure this is your running thread.” Claudia explains this by encouraging authors to think back to where the idea for the review came from in the first place. For instance, if an editor invited you to write after listening to you give a talk, then it makes sense to write the review with a similar take-home message to the talk.

After you’ve decided what to convey to the reader, Anh reminds you to “make sure you are aware of other reviews in this area over the past few years to ensure yours offers a unique angle on the topic.” It’s worth re-examining the literature once you have a good sense of audience, journal requirements, and scope just to make sure that you’re not inadvertently writing the same article that someone else published a few months ago.

4. Make an outline
This is the single most common piece of advice I got. Claudia says, “plan a structure to see what are the core topics that need to be addressed in dedicated sections,” while Danielle’s advice is to “create an outline, bullet point major areas or publications,” and Kushi’s is to “write out an outline of main subtopics that the article will cover.” Trends in Cognitive Sciences editor Lindsey Drayton and I also covered the importance of the outline in our webinar on writing reviews, and you may have even created an outline if you proposed the review to the editor.

Nearly every editor who shared their thoughts brought up outlining in some capacity, so take heed. An outline doesn’t have to be a hierarchical list of bullet points, though it certainly can be if that’s what will help you organize. You might also consider a mind map or other diagram or simple clusters of publications that are related to each other. To structure smaller sections or single paragraphs, Trends in Microbiology editor Gail Teitzel (inspired by her 9-year-old son’s homework) suggests that food-themed graphical organizers can be surprisingly useful for adult writers too.

Why outline? As Lindsey talked about in the webinar, the outline helps you understand the relationship between the different parts of the review and to elevate your review from a collection of results into a compelling narrative. Understanding which publications you want to cite in which section, or which elements of your argument you want to advance in which order, before you begin writing will let you focus on how to tell the most interesting story possible. Outlining beforehand will also help you to spot structural weaknesses in the manuscript before they become problems: if what you thought could be a main section only ends up with one paragraph’s worth of content, you might consider reorganizing to bolster the section or move that paragraph elsewhere.

5. Think about figures
“Even if the actual design of the figures is left to a later stage,” advises Moran Furman, editor of Trends in Neurosciences, “I think it can be helpful to start thinking about the figures from the outset.” Anh agrees: “It’s helpful to devise figures conceptually early on because schematics can be worth a thousand words and help you focus your text.” Moran also advises against what we around the Cell Press office have taken to calling “Frankenfigures”: “figures that tend to work well in Review or Opinion articles are ones that summarize findings or highlight new ideas, rather than just reproduce primary source data.”

6. Start with the introductory section
Just as with research articles, there is no one correct place to begin writing, but the introduction came up frequently as a reasonable place to start. Consider the right level of specificity, again keeping your audience in mind: if you’re writing a review of algal biofuels for a biomolecular engineering audience, you probably don’t need to motivate the entire concept of biofuels.

There are three critical elements of introductory sections that I encourage every Trends in Biotechnology author to include: a basic scientific overview (for a biotechnology journal, this should encompass both the biological system being exploited as a technology and the practical problem that technology is intended to solve), the unique selling point of the review, and a preview of the specific content of the review.

Most authors do well with the scientific overview and the preview of the article. But the unique selling point often takes a little more encouragement. As an author, this should be the most exciting part: this is your chance to tell the world why it should be interested in what you have to say. If you can express this in a succinct and compelling manner, while also explaining how your review advances the conversation beyond any other reviews that may have been published on the topic, then you are putting yourself in a position to succeed as you compose the rest of the manuscript.

7. Engage co-authors, editors, and colleagues early and often
Finally, as we have explained before, never submit the first draft of your manuscript. Instead, read it again and expect to make significant revisions even before you submit: make sure that all of the sections feel like they’re part of the same coherent work, terms are used consistently, and the level of scientific detail doesn’t vary significantly from one paragraph to the next.

You’re not writing a review in a vacuum. Often, you’ll be writing in collaboration with co-authors, who should ideally be involved with every stage of writing, but especially when they’re contributing specific technical expertise. If you’re writing for Trends, you’re working with an editor whose job it is to help you write the best review possible. And you almost certainly have colleagues who are educated and interested in science yet not subject-matter experts in the precise topic of the review. Use these resources to make sure that the article you’ve started writing captures the most recent and exciting literature, conforms to the journal’s specifications, and is comprehensible to a wide audience.

本文来自: http://crosstalk.cell.com/blog/how-to-get-started-writing-a-review-article

如何为同事写推荐信

Throughout the course of my career, I’ve written many recommendation letters for people I’ve both worked with and supervised. The recipients of these letters have ranged from managers of corporate full-time jobs that need just a quick few lines of feedback, to those in government roles where I’m required to provide a lengthy documentation of my time with my colleague.

Serving as someone’s professional or personal reference is a powerful position, indeed; many times, it can be the deciding factor for employers during the hiring process. But while you know the stakes are high, knowing what to actually write in a recommendation letter can be another matter entirely. Here are some useful tips on how write a letter to help your colleague shine above the rest!

While these ideas do not comprise full-fledged recommendation letter templates, they can help any letter writer with writing a letter that will illuminate a job applicant or help a student application by illustrating their qualities. If you have major writing block, while you may want to start with a sample letter of recommendation, a letter sample must be customized to candidate application, and should be a customized letter of recommendation in order to be a good letter.

1. Get the Details

Obtain as much information from your colleague as you can before you write this letter, including (if possible) the job description of the position they’re after and their updated resume.

2. Treat it Like a Cover Letter

Indicate what position the person is applying for, why you know they’re interested in working for that company, and any of their best skills and personal strengths that you have witnessed. Much like cover letters, recommendation letters must paint the picture for an employer. You know your colleague or friend is great, but the employer needs to know the specifics about why. Show them, don’t just tell them.

Example: “It is with pleasure that I recommend Piper Jones for the senior volunteer coordinator position within your department. Piper has been a volunteer manager with our department for over two years where her role has been to coordinate volunteers for service projects. Piper and I have had many conversations about her career goals that include obtaining a leadership role in an organization that may offer opportunities to travel abroad, such as your company has.”

3. Use the S.T.A.R.S. Method

To better tell your colleague’s story, discuss a particular Situation, the Task the person had to execute, the Action steps they took, the Results, and the Skills or Strengths you witnessed this person use effectively.

Example: “Piper was stationed in Spain last fall, where she assisted our satellite office with providing service opportunities to the local community and coordinated volunteers both in person and virtually. Her strengths lie in her ability to organize, communicate, and execute tasks, as demonstrated by her initiating several projects there last fall. Since her return to our main office, she has participated in programs where she has contributed creatively and reconnected with those staff members and individuals she serviced abroad.”

4. Make Confidence Contagious

Make sure you close your letter with confident, reassuring statements that this person is the one they are looking for! This may help seal the deal if your colleague was a bit nervous during the interview and didn’t mirror these sentiments him/herself.

Example: “I am confident that Piper will be an integral part of your team and work well with your professional staff as she has with ours. I am happy to discuss my experience supervising Piper further and can be reached at the number below.”

5. Lastly — Keep a Copy

Always keep a copy of your recommendation letters for both your and your colleague’s sake. You never know when you may need to write another one!

In addition to the foregoing tips for writing a recommendation letter, think about the reader’s point of view. Do you discuss their work ethic, is this a character reference letter, and what overall message are you conveying as a recommender? Do you provide specific examples, is this an appropriate recommendation letter for employment, or is it for a graduate school application?

Ultimately, to write a letter that’s outstanding, recommenders will need to think beyond the recommendation letter template box!

一个人的圆满

 

   有一种女人,无需成全,可自行圆满。实在让人羡慕!

   如今自食其力已不足夸,难得的是感情上她们也能自给自足,这着实不易。

   推己及人的想:平常人温饱有余后,尚有大块情感区空白需要填补。疲惫时需要嘘寒问暖;郁闷时需要劝慰开解;看了影视需要表达讨论;伤风感冒需要怜香惜玉;就是撒痴耍赖人来疯,也需要有人捧场。

   一个人,真比没有观众的演员还惨,这样揣度起来,越发觉得独自圆满者是天赋异禀,非寻常人可拟了!

   有报道说:中国的创业女性已有25%离了婚,有了面包,丢了玫瑰。这正对对应美国女权运动的那句口号:要面包,也要玫瑰!是中国女性已经前卫到不需要爱情了吗?

   只看逐年上升的离婚率就够女人们闻风丧胆。情海里跌扑打拼到体无完肤,只落得西风卷帘,人比黄华瘦。

   只恨没有生在指腹为婚、媒妁言婚的年代,有爹妈一双火眼金睛把关,起码根正苗红、门户相当,比起一不小心作了人家一十八任女友强多啦!

   好男人早被掳掠一空,你要插足染指弄花了脸不说,免费奉送N顶浪女帽子就不轻松。恨嫁结婚狂人打折抛售嫁作人妇,又不幸沦为寂寞闺中妇,永恒地在等丈夫回来!

   戏里早给总结了:第一章看对眼,每一幕中再和别人看对眼,这才有戏。张爱玲说了:用不着负心,一个一个娶将过去就行了,私奔这么劳民伤财的体力活,大没必要!你要效法窦娥满腔阶级仇恨、一脸苦大仇深,苦情戏没人爱看!

   掬完伤心泪,女人们宣称:没有很多爱,就要很多钱!。矫枉过正容易剑走偏锋。男人们深谙此道的,正好将计就计,空手套白狼财色双收,困在瓮中的还是女人!

   现代人的傍身法宝,是一颗粗糙的心、几根强健的神经、加百折不回的耐力,无爱是君王!‘花落水流红,闲愁万种’早不时兴了!

   悠闲散淡的从容美好不是人人可得的。你只看劳苦功高的主妇们抱怨:基于此生卓越贡献,丈夫们来生变马也要来娶她们的咬牙切齿,就忍不住笑出声来。

   红颜弹指老,刹那芳华。指望男人们爱你美好心灵,除非等他们被美女坑惨了以后。这比看到昔日信誓旦旦非你不娶的恋人,变的蓬头垢面大腹便便更令人惊心,你没有理由不珍爱自己。

   好在这恬淡美丽是自己双手赚来。一个人的交游自由,不会比困坐围城更缺少朋友;一个人的独立经济,不用为一毛碎银子看人眉毛牙眼;一个人异想天开,远走天涯亦不用报告请准;一个人的身体发肤,看顾呵护起来一定比兼顾老公儿子来得容易。

   看身边每个人都忙碌、恍惚、喧哗,像一条流光溢彩的漫长地下铁,如果确没看准从哪里上岸好,又担心误车空耗了年华,一个人自成方圆,实在是以不变应万变的绝好主意。

   花落水流红总比首鼠两端、焦虑混沌来的干净。谁说‘莫道不消魂,卷帘西风,人比黄华瘦。’中的女子没有清清爽爽的自娱自乐呢!

预防癌症31条简单守则

1、野餐一定要食用腌菜。一项芬兰研究发现,腌菜过程中的发酵能够产生一些抗癌成分,包括ITCs、吲哚类及莱菔硫烷。为了降低钠的含量,食用前冲洗灌装或坛装的腌菜。

  2、食用绿花椰菜,但不要微波,要蒸食用。绿花椰菜是一种预防癌症的超级食物,你应该经常食用。但要注意:一项西班牙研究发现,微波的绿花椰菜能够破坏蔬菜中97%黄酮类抗癌成分。因此要蒸食用,将其作为小吃生食用,或将其添加到汤或沙拉中食用。

  3、烘烤一些巴西坚果,并将其分散撒在沙拉中。这样的沙拉富含硒(一种矿物质元素能够杀死肿瘤细胞并帮助细胞修复其DNA)。 哈佛大学对超过1000名前列腺癌患者的一项研究表明,13年来,体内血液中含有最高水平硒的患者同体内血液中含有最低水平硒的患者相比,癌症加重人数减少48%。康奈尔大学和亚利桑那大学进行一项引人注目的研究表明,每天摄入200mg硒(含量是无壳巴西坚果的2倍),能够使前列腺肿瘤发生降低63%,结肠直肠癌发生降低58%,肺部恶性肿瘤降低46%及癌症总体死亡率降低39%。

  4、通过维他命D补充钙。达特茅斯医学院的一项研究表明,补充钙能够降低瘤样生长敏感人群结肠息肉(结肠癌的危险因素)的发生率。

  5、食用任何食物均添加大蒜。大蒜包含硫化合物,它能够刺激免疫系统对癌症的天然防御,并具有减少肿瘤生长的潜力。研究表明,大蒜通过多种因素(如第12条那么多)降低胃癌的发生率。

  6、在2汤匙橄榄油中煎炒两瓣捣碎的蒜,然后混入一罐低盐切碎的番茄。轻轻的搅拌直到变热并呈全麦糊状。我们已经注意到大蒜的功效。番茄中的番茄红素能够预防结肠、前列腺及膀胱癌;橄榄油能够帮助身体吸收番茄红素;纤维状的糊剂能够减少结肠癌的风险。所有成分在一起这么多益处:使人品尝起来感觉“味道好极了“!

  7、每周可以在食品杂货店购买香瓜,干完杂活后将其切成片状。将其储存到 冰箱中,每天早上食用数片。香瓜富含类胡萝卜素和植物成分,能够显著降低肺癌风险。

  8、将半杯越橘混入早餐麦片中。越橘抗氧化功效排名第一。抗氧化剂能够中和自由基(体内的不稳定成分,能够破坏细胞并导致疾病甚至癌症)。

  9、尝试晚上食用朝鲜蓟。朝鲜蓟富含水飞蓟素(一种抗氧化剂有助于预防皮肤癌)。为了品尝这美味的蔬菜,剥去其坚韧的外皮,保留其底部,将底部切成片状,并削去尖部。然后将其蒸煮30-45分钟,使其柔嫩。将蒸煮的水倒去,将每一片朝鲜蓟蘸醋或蒜腌泡汁,轻轻的用前牙撕碎该纤维组织,逐渐进入其柔嫩的中央部分。一旦进入到其中央部分,轻轻的舀取中央部分的丝丝纤维组织,蘸一点黄油或柠檬酱,就可以开始享用了!

  10、给烧烤食品添加厚厚的调味剂。烤肉能够产生很多种致癌物质。但美国癌症研究所的研究人员发现,给烤肉覆盖一层厚厚的浸以生菜的调味品能够预防烧焦,并降低致癌物质的产生。另一则小贴士:先将肉放入烘箱中预热,然后再将其放到烤架上进行烧烤。

  11、每次进入浴室的时候,先到厨房喝水或直接饮用冷水机的水。1996年《新英格兰医学》杂志一篇研究发现,每天喝6杯8盎司水的男性膀胱癌的风险降低50%。另一项研究对女性饮水量同结肠癌风险之间的关系进行研究,喝水多的女性结肠癌风险甚至降低45%。

  12、养成喝茶的习惯。绿茶的治疗功效在亚洲已经有数千年历史。在西方国家,最新的研究表明,它能够像预防心血管疾病那样抵抗各种癌症。一些科学家认为绿茶中名为EGCG的化学物质是迄今为止发现的最强效的抗癌成分。

  13、夜间喝啤酒。啤酒能够抵抗幽门螺旋杆菌(已知的胃溃疡致病因素,可能还同胃癌相关)。但啤酒不能喝得过多。一天内喝1、2种以上酒精饮品可能会增加口腔、咽喉、食管、肝脏及乳腺癌症的风险。

  14、夜间食用烧烤鲑鱼。澳大利亚研究人员对加拿大人群研究(看插图)发现,每周服用4次或更多次鱼的人群白血病、骨髓瘤及非何杰金(氏)淋巴瘤发病率降低三分之一。其他研究同样表明,食用含脂肪的鱼(鲑鱼、鲭鱼、大比目鱼、沙丁鱼、鲔鱼以及虾和贝壳类)同女性子宫内膜癌风险降低相关。令人惊讶的ω脂肪酸又发挥功效了!

  15、每天早晨摄入多种维生素。很多研究表明体内理想的维生素及矿物质元素水平能够增强免疫系统功能,有助于抵抗各种癌症。

  16、每天使你的肌肤受15分钟阳光照射。你已经听说过阳光维他命—维生素D,难道不是吗?但是我们经常接收一些劝告在肌肤上涂抹厚厚的防晒霜来避免紫外线的照射,因此我们失去了有价值的营养素。研究人员发现维生素D摄入过少可能会增加多种癌症的风险,包括乳腺癌、结肠癌,前列腺癌、卵巢癌及胃癌,同时也会造成骨质疏松症、糖尿病、多发性硬化症及高血压。暴露于天然和人工日光中,紫外线最佳强度是多少?每天暴露15分钟应该满足正常需要。当然一定要避免过度暴露,因其会增加皮肤癌的风险。如果你想选择一种补充方式两者兼顾(满足正常需要及避免过度暴露),可以通过补钙摄入维生素D。

  17、在你的海滨游泳袋中携带一只玻璃口杯。将防晒霜添入其中,并随时涂抹整个身体。一只玻璃口杯容量约1.5盎司—这是皮肤病专家推荐的容量,用来预防暴露紫外线过度引起的癌症。每2小时重复涂抹。

  18、将猕猴桃切成一半,然后用汤匙舀出新鲜组织。立即吃掉它!猕猴桃含有少量抵抗癌症的抗氧化剂成分,包括维生素C、维生素E、叶黄素及微量元素铜。你还可以将切成一半的猕猴桃相互摩擦,产生的碎末状成分滴到瘦肉上做成柔软剂。

  19、利用避孕套并保持一个配偶。女性拥有的性伙伴越多,感染人乳头状瘤病毒(HPV)的风险越高(HPV能够引起子宫颈癌)。拥有不忠诚的丈夫同样会增加女 性感染人乳头状瘤病毒的风险。

  20、停止食用高脂肪的动物蛋白。耶鲁一项研究发现,食用大量动物蛋白的女性非何杰金(氏)淋巴瘤的发生风险增加70%,而那些食用高饱和脂肪的女性其风险增加90%。因此,改变饮食为低脂肪或无脂肪,利用家禽或鱼类取代牛肉或猪肉,利用橄榄油取代黄油非常重要。

21、让你的爱人多给你葡萄吃。葡萄中富含白藜芦醇(一种酒中发现的抗癌成分),但并不含酒精(增加女性乳腺癌风险)。而且,戒酒(我们希望)能够增强免疫系统。

  22、在沙拉上喷洒韭葱。饮食中高含量的洋葱可能使前列腺癌风险降低50%。当食用生葱或轻炒的葱时,效应最强。因此,尝试韭葱、Vidalia 洋葱、青葱或细香葱用来调味。

23、澳大利亚研究人员发现:做一批新鲜的柠檬或酸橙汁。每日食用柑橘类水果可以使口腔、咽喉及胃部癌症风险降低一半左右。

  24、据西雅图Fred Hutchinson癌症研究中心一项研究表明,每天晚上餐后步行30分钟,可以降低乳腺癌风险。推翻了以往的观点,即只有中等强度的锻炼能够降低雌激素水平(一种致乳腺癌激素)。170名超重,平躺呈马铃薯样的50-75岁女性每周进行3小时中等强度的锻炼,三个月后循环中雌激素水平显著下降。1年后,那些通过步行锻炼使体重降低至少2%的肥胖女性,雌激素水平下降更明显。另一项研究发现, 步行4小时或徒步旅行能够使胰腺癌风险降低一半左右。获益主要由于锻炼引起的胰岛素代谢改善。

  25、买有机食品。它们的生长过程没有添加杀虫剂和激素,两者均可造成细胞损伤并最终导致癌症。

  26、尝试喜爱未喷洒杀虫剂的天然植物(如蒲公英)。利用商业化的杀虫剂喷洒到草坪上增加你患癌症的风险,因为大部分杀虫剂包含2,4-D(同非何杰金(氏)淋巴瘤相关)和MCPP(同软组织癌相关)。另外,杀虫剂单独用于草坪并不会进行同食品一样的严格健康测试。而且,《环境》杂志2004年的一篇文章中提到,并没有联合研究对草坪复合的化学成分进行安全性评估,喷洒杀虫剂的方法仍在继续进行。

  27、购买不需要干洗的衣物。很多干洗店仍利用一种化学物质perc(四氯乙烯),发现动物反复吸入该物质能够造成肾脏及肝脏功能的损伤甚至癌变。购买不需要干洗的衣物,或自己手洗,能够减少该化学物质的摄入。如果必须干洗衣物,穿着前将其从塑料袋中取出后置于空气中或将其放在其他房间。

  28、将黄瓜放于泡菜中,新鲜鲑鱼放于蒸气中。研究发现烟熏及腌制食品包含各种致癌物质。

  29、调整饮食,从炸马铃薯片和番茄薯片转到磨碎的马铃薯和椒盐卷饼。当食品进行烘烤和油煎时,很容易产生潜在的致癌物质(丙烯酰胺)。不感到惊讶,很多富含丙烯酰胺的食品是你最喜爱的食品,如炸马铃薯片、番茄薯片及烘烤的糖类食品。尽管该结论尚未最终确定,但为了公众的利益,生命中心执行主管Michael Jacobson博士估计丙烯酰胺能够造成每年1000-25,000例癌症。他的代理机构已经向食品药品监督管理局(FDA)提出诉讼,申请限制出售含丙烯酰胺的食品。FDA正在研究该问题。

  30、去喷雾光浴室。市面上这样的光浴室服务很多,它不像光浴直接照射床,不用担心会增加罹患皮肤癌的风险。

  31、经常回忆快乐时光(如打保龄球和泳池中潇洒)。纽约州立大学对坚韧的性格进行研究发现,压力大且同朋友和家庭成员关系紧张的男性血液中前列腺特异性抗原(PSA)水平明显增高(PSA是前列腺癌进展的一种标记物)。

中英文标点符号的差异

 
    汉语中目前使用的标点符号是参考借鉴西文的标点体系而制定的,它既保留了西文标点的主体特征,又带有与汉语语言特点相适应的特   色。因而,中英文标点符号之间存在着一定的差异。
  
  ⒈ 汉语中的某些标点符号为英语所没有。
  ⑴ 顿号(、):顿号在汉语中起分割句子中的并列成分的作用;英语中没有顿号,分割句中的并列成分多用逗号。如:
  She slowly, carefully, deliberately moved the box.
  注意:类似的情况下,最后一个逗号后可加and,这个逗号也可省略–She slowly, carefully(,) and deliberately moved the box.
  
  ⑵ 书名号(《》):英文没有书名号,书名、报刊名用斜体或者下划线表示。如:
  Hamlet / Hamlet 《哈姆雷特》
  Winter’s Tale / Winter’s Tale 《冬天的童话》
  The New York Times / The New York Times 《纽约时报》
  另外,英语中文章、诗歌、乐曲、电影、绘画等的名称和交通工具、航天器等的专有名词也常用斜体来表示。
  
  ⑶ 间隔号(•):汉语有间隔号,用在月份和日期、音译的名和姓等需要隔开的词语的正中间,如“一二•九“、“奥黛丽•赫本(人名)“等。英语中没有汉语的间隔号,需要间隔时多用逗点。
  
  ⑷ 着重号:有时汉语用在文字下点实心圆点表示需要强调的词语,这些实心点就是着重号。而英语中没有这一符号,需强调某些成分时可借助文字斜体、某些强调性词汇、特殊句型、标点停顿等多种方法。
  
  ⒉ 英语中的某些标点符号为汉语所没有。
  ⑴ 撇号–Apostrophe(’)
  ⑵ 连字号–Hyphen(-)
  ⑶ 斜线号—Virgule or Slash(/):该符号主要起分割作用,如It could be for staff and / or students. 也常用于标音,如bed /bed/。
  
  ⒊ 某些符号在汉英两种语言中的形式不同。
  ⑴ 中文的句号是空心圈(。)
  英文的句号是实心点(.)。
  
  ⑵ 英文的省略号是三个点(…),位置在行底;
  中文的为六个点(……),居于行中。
  
  ⑶ 英文的破折号是(-)
  中文的是(–)

播客(Podcaster)--获取知识的新方式

所有的博客网站都有一个橙黄色的XML 或是RSS的小标志,而仿佛一夜之间,RSS,这个昔日栖息寻常巷陌的家燕,开始分身百亿,飞入王谢堂前了(BBC、CNN、时代华纳、福布斯、路透社、雅虎、苹果、CNet……)。
RSS(严格说应是Webfeeds)技术始见于1997年,历经数年试炼,而今一朝发力,它要技惊四座了。如果说它的第一步是缩小了博客网站和普通网站的界限,那么,在改变了文字传播的方式后,作为合乎逻辑的下一步选择,它将改变声讯传播的方式。
在过去的半个世纪中,传统的广播方式几无变化。期间虽有卫星广播、网络广播跑过龙套,但绝大多数的人仍然延袭着50年前“你说我听”的收听习惯。
Podcasting就是在这样的背景下在美国强势崛起,而它的使命似乎就是要终结传统的广播模式。
那么什么是Podcasting呢?Podcasting是RSS技术和MP3播放器诸如iPod结合的产物。简单地说,Podcasting就是在你入眠休息或手头忙碌时,你可以借助一款可实现网上定制并即时更新下载的软件(目前是iPodder1.0),自动及时地从网络上下载你定制的讯息,然后再把这些讯息传输到你的便携终端(目前主要是iPod之类的MP3播放器)。这样,在上、下班的路上、在健身锻炼的时候,你就可以享用你自己定制的、完全个性化的波刻(Podcast)了;另一方面,你也可以自行制作自己的波刻(Podcast)上传网站,以供他人收听。
传统广播的特点是即时性,Podcasting的特点则是自主性;传统的广播模式是"你说我听",而Podcasting则是“在我想听的时候听我想听”,而且还可以“你听我说”。在这种模式下,受众不再是媒体内容的被动接收和消费者,而是媒体内容的选择者,同时也是内容的主动参与者和创造者;每一个播客(Podcaster)都是一个听众,每一个听众也可以是一个播客。Podcasting使媒体和受众的界限消弭。
在播客鼻祖、前MTV名人Adam Curry和Doc Searls、Dave Winer等一帮播客的摇旗鼓噪下,Podcasting在美国如野火蔓延。9月28日,著名博客Dan Gillmor曾说:“Podcasting必成气候,比你想象的要快”。言犹在耳,Podcasting就火疯了。在过去短短的一周,Google有关Podcasting的搜索结果每天都在急剧增长。著名播客Doc Searls注意到, 在10月4日时,Google关于Podcasting的搜索结果还只是5,950项,到次日下午,就增加到8,900项--尽管Google仍然固执地认为你输入的词可能错了,善意地提醒你要搜的是不是broadcasting 。
NBC4.com评论:“正如博客一样,Podcasting是网络和传统媒体的最佳联姻”。博客Richard Gayle说:“如果说博客是新一代报纸,那么Podcasting就是新一代广播”。播客Jason Clarke则宣称:Podcasting是“传统广播模式最可怕的梦魇”。
日前,美国著名广播电台KOMO已正式推出自己的波刻(Podcast)节目。
Podcasting强势出场,欣喜之余,还是给我们留下了很多悬念:
Podcasting只是传统广播的一个强有力的挑战者,还是一个拯救者?或者,取代者?
Podcasting的应用前景如何?仅仅是张扬个性的利器吗?在传播、新闻以及教育(特别是远程教育)、培训、营销等领域它又将如何大显神通?
Podcasting目前还是离线收听,未来无线的发展又会对它产生什么样的影响?iPod这一接收终端又会如何演化?(已有传言下一代iPod可能具LCD显示屏,集成视频输出和可拍照功能)。
RSS改变了文字和声讯传播,那么下一步,它又将如何改变视频传播?
Podcasting目前尚处婴儿期,无论其最终如何发展,其横空出世的意义在于它延伸了互联网这个平台:借助便携设备,人们可以更方便地选用丰富的互联网大餐,同时也可以让他人享用自己亲手烹制的特色小菜。
 

Distinct Contributions of Vaccine-Induced Immunoglobulin G1 (IgG1) and IgG2a Antibodies to Protective Immunity against Influenza

INTRODUCTION
Despite the availability of an effective vaccine, the World Health Organization estimates that annual influenza epidemics exact a toll of 3 to 5 million severe illnesses and 250,000 to 500,000 deaths in the industrialized world (63). Part of this failure is due to limited distribution of the vaccine, but part can be attributed to reduced efficacy in groups at high risk for complications. The incipient pandemic developing in Southeast Asia is a warning that we need more-effective influenza vaccines (3, 70). Particularly troubling is the difficulty in generating a robust immune response against highly pathogenic avian influenza viruses of the H5N1 subtype by use of traditional vaccine approaches (67, 72). Refinement of the methodologies used to prevent this important disease and to evaluate the immune response to influenza vaccines is needed.
Typical assays used to measure vaccine responses against influenza antigens include hemagglutination inhibition (HI) and microneutralization assays. These standardized tests are easy to perform and provide a quantitative measure of antibodies based on their ability to neutralize viral particles (57). Use of these assays has shown that high levels of antibody are required to see effective neutralization in vivo (54). While neutralizing titers immediately following vaccination may be high enough to meet this threshold, antibody titers wane over time. In many cases, it may be difficult for the host to maintain a neutralizing antibody titer sufficient to prevent infection during an entire influenza season and into subsequent seasons.
In addition to their neutralizing properties, antibodies can mediate host effector functions and facilitate the removal of a pathogen from a host. Specifically, the Fc portion of immunoglobulin G2a (IgG2a) antibodies interacts with complement components (51) and activatory Fc receptors (21, 25, 69) with a high affinity. This interaction can efficiently activate Fc receptor-mediated effector functions, which include the stimulation of antibody-dependent cell-mediated cytotoxicity (36) and opsonophagocytosis by macrophages (64), the latter of which has been shown to contribute to the clearance of influenza virus from infected hosts (31). The Fc portion of IgG1 antibodies mediates a lower-affinity interaction with activatory Fc receptors and does not stimulate Fc receptor-mediated immune responses as effectively (52, 53). Interestingly, protective anti-influenza immunity in the absence of measurable neutralizing antibodies has been described to occur in influenza vaccine trials with both animals (38, 39) and humans (4, 9), but the explanation for this observation has yet to be determined.
BALB/c mice typically respond to inactivated influenza vaccines and subunit vaccines with a Th2-type immune response (2, 5, 27, 48), which is associated with the stimulation of IgG1 antibodies (60). However, the major antibody isotype present in the sera of mice that survive viral infections is IgG2a (10, 11), which is stimulated during Th1-type immune responses (60). Stimulation of IgG2a antibodies has been associated with increased efficacy of influenza vaccination (1, 30, 31, 48). Additionally, monoclonal antibodies of the IgG2a isotype are more efficient at clearing influenza (20, 50), Ebola (71), and yellow fever (58) virus infections than monoclonal antibodies of the IgG1 isotype displaying similar antigenic specificities.
In the present study, we specifically stimulated immunity against the hemagglutinin (HA) surface glycoprotein of influenza virus without complementary immunity from other external (neuraminidase) and internal (nucleoprotein [NP] and acid polymerase [PA]) components of the virus that are known to play a role in immunity against influenza viruses (13, 33-35). While focusing on the HA alone does not induce optimal protection against influenza challenge, it allowed us to dissect the distinct contributions of different elements of the immune response. We delivered influenza HA expressed in plasmid DNA via the gene gun, a route of vaccination that is known to induce a predominantly IgG1 response in BALB/c mice (16, 41, 76). We then vaccinated mice with replication-deficient viral replicon particles (VRP) from Venezuelan equine encephalitis (VEE) virus, which express the influenza HA in a manner known to enhance IgG2a antibody levels in mice (23, 75, 76). Our results support a role for IgG1 antibodies in the neutralization of viral particles both in vitro and in vivo. In contrast, the specific induction of IgG2a antibodies was not associated with neutralization of influenza virus but appears to assist in the clearance of influenza virus from the infected host. The data are discussed with emphasis on the different roles of antibody isotypes in antiviral immunity.
MATERIALS AND METHODS
Mice. Adult (6- to 8-week-old) female BALB/cJ mice were obtained from Jackson Laboratories (Bar Harbor, ME). Mice were housed in groups of four to six in high-temperature 31.2- by 23.5- by 15.2-cm polycarbonate cages with isolator lids. Rooms used for housing mice were maintained on a 12-h:12-h light:dark cycle at 22 ± 2°C with a humidity of 50% in the biosafety level 2 facility at St. Jude Children’s Research Hospital (Memphis, TN). Prior to inclusion in experiments, mice were allowed at least 7 days to acclimate to the animal facility. Laboratory autoclavable rodent diet (PMI Nutrition International, St. Louis, MO) and autoclaved water were available ad libitum. All experiments were performed in accordance with the guidelines set forth by the Animal Care and Use Committee at St. Jude Children’s Research Hospital.
Coupling plasmid DNA to gold particles. HA from the A/Hong Kong/1/68 (H3N2) (HK68) (GenBank accession no. AF348176) strain of influenza virus was cloned into pHW2000 plasmid DNA as described previously (29). The HA cloned in these studies differed from the GenBank sequence at N153I (A458T).
Spermidine (0.1 M) (Sigma, St. Louis, MO), 2.5 M CaCl2 (Fisher, Fair Lawn, NJ), and 2.5 µg plasmid DNA per 1 mg gold (1-µm particle size) (Bio-Rad Laboratories, Hercules, CA) were incubated at room temperature. Ethanol-washed gold beads were suspended in ethanol containing 0.2 mg ml–1 polyvinylpyrrolidone (molecular weight, 360,000) and dried onto Tefzel tubing (Saint-Gobain Performance Plastics, Mickleton, NJ).
VRP creation. VEE VRP expressing an identical HA sequence were produced as described previously (46, 55) using constructs provided by Alphavax (Alphavax, Inc., Research Triangle Park, NC). Briefly, RNA from a single construct expressing both VEE nonstructural proteins and HK68 HA in place of VEE structural proteins was transfected into baby hamster kidney (BHK) cells by electroporation. Concurrently, RNA from two helper constructs that expressed VEE structural proteins but lacked packaging signals was transfected into BHK cells. Coelectroporation of these three RNA constructs results in the production of VRP that express the nonstructural proteins of VEE and the influenza HA. Supernatants from transfected BHK cells containing VRP were purified and concentrated prior to inoculation. VRP encoding green fluorescent protein (GFP) in place of influenza HA were used as a heterologous antigen control (46).
HK/Syd reassortant influenza virus. Individual influenza genes were cloned into pHW2000 plasmid vectors as described previously (29). The HA component of the virus was derived from the HK68 HA plasmid described above. The neuraminidase component used for creation of these viruses was from the A/Sydney/5/97 (H3N2) strain of influenza virus. The remaining genes used to create influenza virus were from A/Puerto Rico/8/34 (Erich Hoffmann, St. Jude Children’s Research Hospital). Influenza virus (HK/Syd) was created using the reverse genetics technique described previously (28), and the rescued virus was propagated in 10-day-old embryonated chicken eggs for 72 h at 37°C.
HK/Syd virus created using reverse genetics had an egg 50% infective dose (ID50) of 107.50 and a Madin-Darby canine kidney (MDCK) 50% tissue culture infective dose (TCID50) of 107.375, measured using techniques described previously (74). With BALB/c mice (Jackson Laboratories, Bar Harbor, ME), the ID50 was 1 TCID50, while the 50% lethal dose was 105.5 TCID50. Following administration of lethal doses of influenza (either 3 or 10 50% minimum lethal doses [MLD50]), mice were monitored for signs of morbidity (weight loss) and mortality (survival). Mice that lost more than 33% of their initial body weight were euthanized and recorded as dying on the following day. Either 3 or 6 days after sublethal challenge (100 50% median infective doses [MID50]), mice were euthanized, lungs were removed, rinsed in sterile phosphate-buffered saline (PBS), and homogenized, and TCID50 values for dilutions of these homogenates were determined. ID50 and 50% lethal dose values were calculated using the method of Reed and Muench (56).
Vaccination. For DNA vaccination, 2.5 µg of either HA- or vector control DNA-coated gold particles (1 mg) was delivered at two nonoverlapping sites on the abdomen, using a Helios (Bio-Rad) gene gun, at 21-day intervals. Mice that were boosted with VRP received 1 x 106 infectious units expressing either HA or GFP (vector control) delivered subcutaneously in a 10-µl volume in the right rear footpad (46) at 28-day intervals. For an additional control group, mice were inoculated in the right rear footpad with PBS. When DNA was delivered without subsequent VRP administration, mice received three DNA inoculations (primary, secondary, and tertiary exposures). For groups that received DNA and VRP, mice were inoculated with two doses of DNA (primary and secondary) followed by two vaccinations with either VRP or PBS in the footpad (tertiary and quaternary). For all experiments, when DNA was administered, serum was collected 14 days after each vaccination, and when VRP or PBS was inoculated into the footpad, serum was collected at day 21 postinoculation. Serum was obtained from blood collected via the orbital plexus of isoflurane-anesthetized mice. Vaccination and serum collection time points were optimized through prior preparatory experiments conducted in our lab with these immunogens.
ELISA. Egg-grown HK/Syd virus was concentrated, purified over a sucrose gradient as described previously (42), and inactivated with 0.025% formalin treatment for 3 days at 4°C (68). HA content of this virus preparation was quantitated after resolution through 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Bio-Rad) using bovine serum albumin (BSA) (Pierce, Rockford, IL) as a standard. Enzyme-linked immunosorbent assay (ELISA) plates (Becton Dickinson and Company, Franklin Lakes, NJ) were coated with 1 µg HA ml–1 in PBS. Plates were washed with PBS containing 0.05% (vol/vol) Tween 20 (Sigma) (PBST) and blocked with 10% fetal bovine serum (HyClone, Logan, UT) in PBST (FBS-PBST). Receptor-destroying-enzyme-treated (Accurate Chemical & Scientific Corp., Westbury, NY), heat-inactivated sera were diluted in FBS-PBST. Alkaline phosphatase-conjugated goat anti-mouse IgA, IgM, IgG1, IgG2a, IgG2b, IgG3, or IgG ( heavy chain specific) (Southern Biotechnology Associates, Birmingham, AL), diluted 1:1,000 in FBS-PBST, was used as the detection antibody, with p-nitrophenylphosphate as a substrate (Sigma). The optical density (OD) was read at 405 nm using a Multiskan Ascent plate reader (Labsystems, Helsinki, Finland) 1 h after substrate addition. Reciprocal serum antibody titers were calculated at 50% maximal binding on the titration curve. Samples with OD values of less than 0.5 at the starting dilution (1:50) were reported as having a titer of less than 50.
Microneutralization. HK/Syd (2 x 103 TCID50 ml–1) was incubated for 2 h with serum diluted in infection media as described previously (57). Virus-serum mixtures were then added to PBS-washed MDCK cell monolayers in 96-well Falcon plates (Becton Dickinson) and incubated for 2 h. Inoculum was removed, and cells were incubated with media containing 2 µg ml–1 TPCK-trypsin for 18 to 22 h. Influenza virus was detected using mouse monoclonal antibody specific for influenza A virus nucleoprotein (kindly provided by Robert G. Webster, St. Jude Children’s Research Hospital) diluted 1:2,000 in 1% BSA (Invitrogen, Grand Island, NY) in PBS containing 0.1% (vol/vol) Tween 20 (Sigma), as described previously (57). Horseradish peroxidase-conjugated goat anti-mouse IgG (Fc specific) (Sigma), diluted 1:2,000 in 1% BSA in PBS containing 0.1% (vol/vol) Tween 20, was used as the detection antibody, with o-phenylenediamine dihydrochloride as the substrate (Sigma). Upon addition of 1 N H2SO4, the OD at 492 nm was measured using a Multiskan Ascent plate reader. The microneutralization titer is reported as the reciprocal of the final serum dilution that exhibits an OD value less than one-half of that measured in virus control wells.
Flow cytometry. Mice were euthanized, the axillary artery was cut, and cells were recovered from the bronchoalveolar lavage (BAL) fluid by three 1-ml washes with Hanks balanced salt solution. The inferior vena cava was cut, and the liver was perfused via the hepatic portal vein. The gallbladder was excised during the liver’s removal. Livers were minced and plunged through fine-mesh filters. The cell suspension was washed twice in cold PBS with 2% fetal bovine serum and 0.02% sodium azide and spun through 33.8% Percoll (Amersham Biosciences, Sweden) for 12 min at 693 x g to isolate lymphocytes as previously described (24). Isolated cells were incubated for 20 min on ice with phycoerythrin-conjugated anti-CD8 (BD Pharmingen) and an unconjugated rat anti-mouse CD16/32 antibody (BD Pharmingen) to block nonspecific Fc receptor-mediated binding. Cell populations were analyzed using a FACSCalibur system and CellQuest software (BD Biosciences, San Jose, CA).
Statistical analysis. Comparison of survival between groups of mice was done with a log rank chi-square test of the Kaplan-Meier survival data. Comparison between antibody titers was done using repeated-measures analysis of variance (ANOVA) by the Holm-Sidak method. SigmaStat for Windows (v3.11; SysStat Software, Inc.) was utilized for all statistical analyses. A P value of <0.05 was considered significant for these comparisons. Because of small group sizes, the analysis lacked the power to distinguish statistically between lung titer values.
RESULTS
HA-DNA vaccination induces protective immunity in mice. To test the efficacy of our vaccine using the plasmid DNA vector alone, we initially delivered plasmid DNA (pHW2000) expressing influenza HA (HA-DNA) from the A/Hong Kong/1/68 strain of influenza three times via gene gun. After the first exposure to the DNA, neither IgG1 nor IgG2a antibody levels were detectable by ELISA (Fig. 1A). After two doses of the DNA vaccine (secondary response), influenza-specific IgG1 antibodies had increased significantly (P < 0.01 by ANOVA) in the group inoculated with HA-DNA compared to levels in the group receiving vector DNA. After a third dose of the vaccine (tertiary response), a significant increase (P < 0.01 by ANOVA) in IgG1 antibody expression was seen in the HA-DNA-vaccinated group compared to levels in all other groups, including in comparison to the IgG1 titers seen after the secondary exposure to HA-DNA. Two of the five HA-DNA-vaccinated mice had measurable levels of IgG2a at day 14 after the secondary exposure to DNA. After the third exposure to HA-DNA, three of the five mice expressed IgG2a to a level that resulted in a significant difference (P < 0.01 by ANOVA) in IgG2a antibody titers upon comparison to those of vector DNA-inoculated mice. Upon challenge with a lethal dose (3 MLD50) of influenza virus (Fig. 1B), all of the mice were infected, as evidenced by a drop in body weight. Mice that received three doses of HA-DNA were significantly protected (P < 0.01 by log rank test of the Kaplan-Meier survival data) from the challenge (94% survival), while mice that received vector DNA were not (20% survival).
Influenza virus-neutralizing antibodies are induced following administration of HA-DNA but not HA-VRP. Having established that this DNA vaccine regimen induced the expected result of consistent IgG1 expression and protected mice from a lethal challenge with influenza, we next used a VEE VRP vector expressing the same influenza HA in an attempt to understand the relevant role of vaccine-induced IgG2a responses within these animals. Our initial assessment of vaccine-induced immunity involved measuring neutralizing antibodies induced using these different HA-expressing vectors. Groups initially received two exposures to either vector or HA-DNA, followed by two inoculations with VRP expressing either HA (HA-VRP) or GFP (GFP-VRP) as a control. As a further control for the potential effects of the VRP alone, additional groups were boosted with PBS instead of VRP. The serum samples analyzed here were obtained 21 days after the quaternary exposure to the immunogen (two exposures to DNA followed by two exposures to either VRP or PBS). Mice primed with vector DNA did not produce specific neutralizing antibodies as measured by microneutralization (Fig. 2), even after two subsequent inoculations with HA-VRP. Groups primed with HA-DNA, however, expressed detectable levels of neutralizing antibody in most animals. The group that received HA-DNA plus HA-VRP was the only group that exhibited a statistically significant increase in neutralizing antibody titers (P < 0.01 compared to all three groups inoculated with vector DNA). While boosting HA-DNA-vaccinated animals with HA-VRP modestly enhanced this response, it is clear that induction of neutralizing antibodies in this model was dependent on the HA-DNA prime. Analysis of sera using the traditional HI assay showed a similar pattern of neutralizing antibody induction (data not shown).
 
Expression of HA-specific IgG antibody isotypes depends on the vector used for antigen delivery. We next employed an ELISA technique to measure serum antibody expression 21 days after the quaternary exposure to the immunogen (two exposures to DNA followed by two inoculations with either VRP or PBS). This analysis revealed that IgG antibodies were induced to similar levels in animals vaccinated with either HA-DNA or HA-VRP (Fig. 3). This is of interest because influenza virus-specific antibodies present within the sera of mice vaccinated with HA-VRP were not detected by microneutralization (Fig. 2) but were detectable by ELISA. The groups inoculated with HA-DNA followed by a boost with either PBS or GFP-VRP expressed influenza virus-specific IgG antibody levels that were significantly higher (P < 0.01 by ANOVA) than those detected in groups that received vector DNA followed by either PBS or GFP-VRP. As expected, combined vaccination with HA-DNA and HA-VRP yielded maximal IgG expression, resulting in a significant increase in IgG antibody titers (P < 0.01 by ANOVA) compared to those of mice in all three groups that received vector DNA. Based upon this finding, we investigated the contributions of the different IgG isotypes to this total IgG response.
The IgG isotype response was dominated by IgG1 and IgG2a antibodies, which are reported for the six groups after each individual administration of immunogen (Fig. 4). IgG1 antibodies were not detected 14 days after a primary inoculation with HA-DNA. A second vaccination with HA-DNA induced a significant (P < 0.01 by ANOVA) and consistent IgG1 antibody response by all three groups inoculated with HA-DNA, as shown at 14 days after this secondary inoculation. The IgG1 response to HA-DNA in this experiment was similar to that reported in the first study (Fig. 1). Inoculation of mice with HA-VRP alone (tertiary and quaternary inoculations) did not yield significant IgG1 expression, but the group inoculated twice with HA-DNA and boosted with HA-VRP had significantly higher IgG1 titers (P < 0.01 by ANOVA) than all groups at 21 days after both tertiary and quaternary exposures to the HA antigen.
As with IgG1 expression, and consistent with what we saw in the initial experiment (Fig. 1), IgG2a levels were below the detectable limit 14 days after primary exposure to the antigen via the gene gun (Fig. 4). In fact, delivery of HA-DNA alone did not significantly induce an IgG2a response to this antigen even at day 14 of the secondary response to HA-DNA. However, 21 days after exposure to HA-VRP (tertiary response), IgG2a levels were increased, regardless of the DNA prime. Influenza-specific IgG2a expression by HA-VRP-vaccinated mice reached a significant difference (P < 0.01 by ANOVA) for the group that received two inoculations with HA-DNA, compared to all other groups, at 21 days after both the tertiary and the quaternary exposure to the antigen. Thus, HA-DNA vaccination induced primarily IgG1 antibodies, while HA-VRP inoculation consistently stimulated IgG2a antibodies. When HA was administered by both DNA and VRP vectors, the highest titers for influenza-specific IgG1 and IgG2a antibodies were achieved. On day 21 of the quaternary response to influenza HA, IgA, IgG2b, and IgG3 antibody titers were measured. Influenza-specific serum antibodies of the IgA and IgG3 isotypes did not achieve a measurable titer in this study, and only two mice in the vector DNA-plus-HA-VRP group (titer values of 113 and 119) and three mice in the HA-DNA-plus-HA-VRP group (titer values of 128, 153, and 290) expressed measurable levels of IgG2b antibodies. Influenza-specific antibodies of the IgM isotype were detected but levels did not differ between the groups (data not shown).
In vivo neutralization and protective immunity against influenza are optimized when both HA-DNA and HA-VRP are delivered. To assess the role of vaccine-induced antibodies in protection against influenza, mice were first challenged with a sublethal dose (100 MID50) of influenza virus. At both 3 and 6 days after challenge, mice that were primed with HA-DNA exhibited lower viral titers than those that were primed with vector DNA (Fig. 5). The most effective in vivo neutralization was seen with mice that received a prime with HA-DNA and a boost with HA-VRP. On day 6 after viral challenge, two mice in the group inoculated with HA-DNA plus HA-VRP had undetectable levels of virus in their lungs, and the third mouse in that group had a lung viral titer of 2 x 103 TCID50 ml–1.
 
Next, we utilized an influenza virus challenge study to assess the impact of vaccine-induced IgG1 and IgG2a expression on survival. In our previous experiment, HA-DNA was effective at preventing death in 94% of BALB/c mice challenged with 3 MLD50 of influenza virus. To test the contributions of HA-DNA and HA-VRP delivery to protection against lethal influenza challenge, we exposed these mice to a much higher dose (10 MLD50) of HK68 HA-expressing influenza virus as a more stringent measure of immunity (Fig. 6). After exposure to this high viral load, all mice were infected and lost weight (Fig. 6, top). Mice in the vector DNA-vaccinated groups that were boosted with either PBS or GFP-VRP were not protected from the challenge (0% survival for both groups) (Fig. 6, bottom). Mice that were vaccinated with HA-DNA alone showed survival rates of 30% (HA-DNA plus PBS) (P < 0.05 compared to groups vaccinated with vector DNA plus PBS and vector DNA plus GFP-VRP by log rank test) and 20% (HA-DNA plus GFP-VRP) by use of this higher challenge dose. Interestingly, the two groups that received HA-VRP showed similar, significant levels of survival (P < 0.05 compared to groups vaccinated with vector DNA plus PBS and vector DNA plus GFP-VRP by log rank test), regardless of whether they were initially inoculated with vector DNA (44% survival) or HA-DNA (45% survival). Challenge with 10 MLD50 influenza virus allowed for an assessment of the increased immunity observed with HA-VRP inoculation that could not have been determined using 3 MLD50.
Vaccination against influenza HA by use of this regimen does not enhance CD8 T-cell immunity. CD8+ T cells contribute significantly to protection against influenza, primarily through presentation of peptides from internal viral proteins (NP or PA) (66). We used a vaccine regimen directed specifically against the HA component of influenza virus to avoid confounding immunity from T cells. However, in the absence of NP and PA proteins, it is possible that T-cell immunity may be stimulated through a compensatory mechanism (7). Thus, we tested the ability of this vaccine regimen to enrich CD8 T cells within the cell populations of the BAL fluid and livers of these mice. The BAL fluid was measured for the presence of CD8 T cells within the local infection environment, whereas the CD8 populations within the liver were analyzed based on the role of this organ as a reservoir for memory effector T cells (12, 32). On day 6 after sublethal (100 MID50) viral challenge, there were suboptimal levels of effector T cells in both the lungs and the livers of these mice (Fig. 7). The low-level expression of these cells indicates that this vaccine regimen is not effective at enriching T cells, although a role for T cells in the resolution of influenza virus past day 6 cannot be excluded.
 
DISCUSSION
In this study, we attempted to parse the contribution of vaccine-stimulated IgG antibody subclasses to protection against influenza infection. We utilized two routes of vaccination known to differentially stimulate immune responses and focused only on the HA as an antigen so our results would not be confounded by a contribution of cellular immunity. Upon HA-DNA vaccination via gene gun, antibody stimulation could be measured using a traditional microneutralization assay. These antibodies could also be detected by ELISA and were shown to be of the IgG1 isotype. Induction of these antibodies plays a role in protection against influenza, as HA-DNA-vaccinated mice exhibited reduced lung viral titers upon challenge with a low dose (100 MID50) of influenza virus and protection against challenge with a modest dose (3 MLD50) of influenza virus. However, the groups that received HA-DNA exhibited suboptimal survival upon challenge with a significantly higher dose of influenza virus (10 MLD50), even in the presence of high IgG1 expression and viral neutralization.
When mice were exposed to both HA-DNA and HA-VRP, antibody levels reached their highest as measured by both microneutralization and ELISA. These elevated antibody levels correlated with protection against a more stringent challenge dose of influenza virus (10 MLD50). While it was expected that mice inoculated with both HA-DNA and HA-VRP would achieve optimal survival in this experiment, it was surprising that the mice that received HA-VRP alone, a group which had low levels of viral neutralization and IgG1 expression, achieved equivalent survival rates. Analysis of antibody expression by ELISA revealed IgG antibody levels that were comparable to those seen with HA-DNA-vaccinated mice, but the major IgG isotype expressed within these animals was IgG2a, not IgG1. The inability of the observed protection to be explained by vaccine-induced memory effector T cells within these mice implicates influenza-specific antibodies in both the neutralization and the clearance of this virus. It has been reported that antigen delivery using a VRP vehicle can result in enhanced antigen-specific serum IgA expression (76), but we were unable to detect this isotype after HA-DNA and HA-VRP vaccination. The low levels of IgG2b and IgG3 observed after gene gun and VRP vaccination are similar to what has been reported previously (16, 23). Taken together, the analyses of different serum antibody isotypes after vaccination with this regimen strengthen the argument that vaccine-induced IgG1 and IgG2a antibodies contribute to the protective responses observed.
Of specific interest is the observation with this model that mice were protected from influenza infection even when serum neutralizing activity was not detectable by standard assays. Protective immunity in the absence of strong neutralizing antibody titers has been observed previously with influenza vaccine studies (4, 38, 39, 44). Here we show that antibody levels are measured more efficiently by an ELISA method, allowing for the quantitation of vaccine-induced antibodies that remain undetected when traditional neutralization assays are employed. Furthermore, by using the ELISA technique, not only were we able to detect vaccine-induced antibodies within these mice but we were able to analyze the individual isotypes stimulated and the differential contributions of these isotypes to immunity against influenza. Specifically, we describe contributions of both neutralizing and host effector response-activating antibody isotypes that together result in strong immunity against influenza. Since the induction of these isotypes could be detected and differentiated only by ELISA, our findings argue for the incorporation of this technique in studies designed to assess correlates of immunity after influenza vaccination, in particular, when neutralizing antibody levels are either low or undetectable.
In support of the hypothesis that antibody isotypes play different roles in antiviral immunity, experiments conducted with monoclonal antibodies against Ebola envelope antigens showed that IgG2a antibodies were more effective at clearing infections than antibodies of the IgG1 isotype, even when each was specific for the same epitope (71). Protection against Ebola was achieved with lower concentrations of IgG2a antibodies, making it possible that, in addition to neutralizing viral particles, antibodies of the IgG2a isotype can stimulate host effector mechanisms that aid in the clearance of viral infections (71). Host effector mechanisms that are stimulated by IgG2a antibodies include complement fixation (51) and Fc receptor activation (52, 53). Since high levels of antibody (approximately 70 antibody molecules) are required to neutralize a single influenza virion (65), the presence of antibodies that are more active inducers of host clearance mechanisms and that are effective at lower concentrations (71) may aid in the resolution of the infection when levels of neutralizing antibodies begin to wane.
A contribution of the complement system in stimulating anti-influenza T-cell immunity has been described previously (40), but its role in the clearance of influenza virus is still unclear (17, 50). Alternatively, a role for Fc receptor-mediated clearance of influenza from vaccinated hosts has been described previously (31) through the use of mice deficient in expression of activating Fc receptors that signal through the common  chain (64), a group that now includes the recently described FcRIV (52). Furthermore, antibodies of the IgG2a isotype exhibit the best Fc receptor activatory-to-inhibitory ratio of all IgG isotypes (53), making it the isotype predicted to have the greatest ability to activate Fc receptor-mediated host effector responses.
Vaccination against the HA component of influenza by use of either HA-DNA or HA-VRP does not appear to induce strong T-cell-mediated immunity, as enriched memory populations of CD8 T cells were not detected in the local (BAL fluid) or systemic (liver) populations after challenge of these mice with influenza virus. While the absence of these cells implies that antibodies are the main contributors to the protection seen within this model, the important role of T cells in the eventual resolution of the virus infection cannot be excluded. T cells are important in viral clearance due to their ability to lyse infected cells (45, 73) and stimulate cytokine expression, which activates cells, like macrophages, that are involved in the clearance of pathogens (18, 37, 49). Since the vaccine itself does not specifically enrich T cells but the antibodies present can significantly reduce the amount of virus to which the host is exposed, it is possible that the stimulation of T cells is delayed past day 6 after challenge and that these cells do not reach their maximal capacity until later in the infection process, during the resolution phase. For this study, we deliberately used a vaccine strategy that would not be predicted to induce T-cell immunity. A vaccine of similar design, utilizing a protein that stimulates cellular immunity, such as NP, would be predicted to be more efficacious in terms of improved overall survival.
The vaccine design described in this study stimulates IgG1 and IgG2a antibodies in a way that makes it possible to study the contribution of these isotypes both individually and in concert. This study reveals that even in the absence of neutralizing antibodies a vaccinated host may have protective immunity against influenza. These findings have implications in the development of vaccines for pandemic preparedness, as subunit and recombinant vaccines against H5 antigens have shown low immunogenicity in humans, as measured by HI titers, microneutralization, single radial hemolysis, and ELISA for total IgG (61, 62). In order to increase the immunogenicity of a vaccine against the H5N3 virus A/Duck/Singapore/97, the adjuvant MF59, which has been licensed for use in Europe (59), was included in the vaccine (62). MF59 increases influenza-specific antibody responses in humans (14, 47), with evidence of modest IgG2a antibody induction after vaccination of BALB/c mice (26).
Additionally, H5 HA-expressing DNA delivered via the gene gun to either mice or chickens induces protection against homologous and heterologous virus challenge, even in the absence of high HI titers (38, 39). Our results suggest that reduced expression of neutralizing antibodies in response to H5 antigens does not necessarily indicate an ineffective vaccine and that characterization of the immune response induced using more-sensitive, isotype-specific assays may better predict vaccine efficacy. Pursuit of a vaccine strategy to induce complement-fixing and Fc receptor-activating antibodies in addition to neutralizing antibodies might improve vaccine efficacy.
DNA vaccines provide an advantage over conventional influenza vaccines in their ability to be mass-produced safely in a short period of time and their ability to be quickly altered to deal with the rapidly changing antigens of influenza viruses that circulate within the human population (19). Unfortunately, the applicability of DNA vaccines to humans has been limited by low efficacy (15, 19). One proposed way to increase the immunogenicity of DNA vaccines is to deliver them in a prime-boost manner using viral vectors as the boosting vehicle (6, 15, 22). This vaccination regimen has been shown by other groups to be beneficial over repeated exposures to the antigen delivered by either the DNA or the viral vector alone (8, 43). Our data support this concept and demonstrate that the increased immunity seen after delivery of both the DNA and the viral vector is not simply due to increases in total antibody responses. Instead, the prime-boost regimens may be more effective due to their ability to stimulate both neutralizing and host effector response-activating antibodies, thus better equipping the host to deal with infection.
 
 
 
 
 
 

做科研的应该养成一些好习惯

前几天我拜读了一下<富兰克林传>,富兰克林是美国的开国元勋,几乎完全靠自学成为一个著名的学者,他的自传中提到了在他21岁的时候制定了影响他一生的13个美德,然后他逐个养成,最后终成大器.我读后深受触动,思考良久,我形成了一些看法,与大家分享.
我记得台湾一个搞生物的曾说过回想自己的研究生涯,左看是偶然,右看是宿命,有没有命运这种东西,我不知道,但是我知道世界上没有"科学家成功教程"之类的书,原因何在,一个科学家除了要有专业知识之外,意志品质和自身的经历也很重要.有时侯我们身上的一些不好的习惯使我们失去了很好的机会.所以我认为我们应该养成一些好的习惯,虽然现在看着没什么用,但会对我们产生潜移默化的影响.对于作科研的人来说,那些习惯又是必须的呢?
1.思考的习惯.大多数的人没有这种习惯,或是只在实验室的时候思考.可是很多的有创造性的idea是在空闲的时候想到的.
2.乐观的习惯.有一些人是天生的乐天派,一些小事可以让他忘记很多的烦恼.做试验的时候有时侯会出现意想不到的困难,乐观是我们继续前进的动力之一.
3.持之以恒的习惯.一些好的小的事情多坚持几次,就形成了好的习惯.
4.交朋友的习惯.多交一些朋友,很多原本很困难的事情会因为朋友的帮助迎刃而解,其实交朋友只要遵循一定的原则就可以了,比如说在别人有困难的时候伸出援助之手,在实验室的一些小事上多帮助别人,多与人交流,心胸尽量开阔一些,请别人吃一下饭之类.
5.创新的习惯.很多人没有这种习惯,总是认为别人是如何如何了不起,平时看书,看文献也是我们应该认识到别人方法的优点与缺点,找准突破口,创新也不是很难的事情,哪怕是一点点的改进呢.
6.找到学科前沿的习惯.找一片篇最近发表的好文献仔细研读,根据参考文献找到这方面研究的前前后后,不难找到别人是如何作科研的和现在的难题之所在,别人解决不了的关键问题就是学科的前沿.
所有的习惯不是一次就能形成的,正如富兰克林所做的,一段时间内只注意养成一个好的习惯,当然过程有时候很痛苦,很难坚持.希望大家成功,实现自己的梦想!

35岁之前成功的12条黄金法则

第一章:一个目标

一艘没有航行目标的船,任何方向的风都是逆风
1、你为什么是穷人,第一点就是你没有立下成为富人的目标
2、你的人生核心目标是什么?
杰出人士与平庸之辈的根本差别并不是天赋、机遇,而在于有无目标。
3、起跑领先一步,人生领先一大步:成功从选定目标开始
4、贾金斯式的人永远不会成功
为什么大多数人没有成功?真正能完成自己计划的人只有5%,大多数人不是将自己的目标舍弃,就是沦为缺乏行动的空想
5、 如果你想在35岁以前成功,你一定在25至30岁之间确立好你的人生目标
6、 每日、每月、每年都要问自己:我是否达到了自己定下的目标

第二章:两个成功基点

站好位置,调正心态,努力冲刺,35岁以前成功
(一)人生定位
1、 人怕入错行:你的核心竞争力是什么?
2、 成功者找方法,失败者找借口
3、 从三百六十行中选择你的最爱
人人都可以创业,但却不是人人都能创业成功
4、 寻找自己的黄金宝地
(二)永恒的真理:心态决定命运,35岁以前的心态决定你一生的命运
1、 不满现状的人才能成为富翁
2、 敢于梦想,勇于梦想,这个世界永远属于追梦的人
3、 35岁以前不要怕,35岁以后不要悔
4、 出身贫民,并非一辈子是贫民,只要你永远保持那颗进取的心。中国成功人士大多来自小地方
5、 做一个积极的思维者
6、 不要败给悲观的自己
有的人比你富有一千倍,他们也会比你聪明一千倍么?不会,他们只是年轻时心气比你高一千倍。
人生的好多次失败,最后并不是败给别人,而是败给了悲观的自己。
7、 成功者不过是爬起来比倒下去多一次
8、 宁可去碰壁,也不要在家里面壁
克服你的失败、消极的心态
(1) 找个地方喝点酒
(2) 找个迪厅跳跳舞
(3) 找帮朋友侃侃山
(4) 积极行动起来

第三章:三大技巧

1、管理时间:你的时间在哪里,你的成就就在哪里。
把一小时看成60分钟的人,比看作一小时的人多60倍
2、你不理财,财不理你
3、自我管理,游刃有余
(1) 创业不怕本小,脑子一定要好
(2) 可以开家特色店
(3) 做别人不愿做的生意

第四章:四项安身立命的理念

35岁以前一定要形成个人风格
1、做人优于做事
做事失败可以重来,做人失败却不能重来
(1) 做人要讲义气
(2) 永不气馁
2、豁达的男人有财运,豁达的女人有帮夫运
35岁以前搞定婚姻生活
3、忠诚的原则:35岁以前你还没有建立起忠诚美誉,这一缺点将要困扰你的一生
4、把小事做细,但不要耍小聪明
中国人想做大事的人太多,而愿把小事做完美的人太少

第五章:五分运气??

比尔·盖茨说:人生是不公平的,习惯去接受它吧
1、人生的确有很多运气的成人:谋事在人,成事在天:中国的古训说明各占一半
2、机会时常意外地降临,但属于那些不应决不放弃的人
3、抓住人生的每一次机会
机会就像一只小鸟,如果你不抓住,它就会飞得无影无踪
4、 者早一步,愚者晚一步

第六章:六项要求

1、智慧
(1)别人可你以拿走你的一切,但拿不走你的智慧
(2)巧妙运用自己的智慧
(3)智者与愚者的区别
2、勇气
(1)勇气的力量有时会让你成为"超人"
(2)敢于放弃,敢于"舍得"
3、培养自己的"领导才能、领袖气质"
(1) 激情感染别人
(2) "三o七法则"实现领袖气质
(3) 拍板决断能力
(4) 人格魅力
4、创造性:不要做循规蹈矩的人
25-35岁是人生最有创造性的阶段,很多成功人士也都产生在这一阶段
5、明智
(1) 知道自己的长处、短处,定向聚焦
(2) 尽量在自己的熟悉的领域努力
6、持之以恒的行动力:在你选定行业坚持十年,你一定会成为大赢家

第七章:七分学习

1、知识改变命运
2、35岁以前学会你行业中必要的一切知识
a) 每天淘汰你自己
b) 在商言商
3、太相信的书人,只能成为打工仔
4、思考、实践、再思考、再实践

第八章:八分交际

朋友多了路好走
1、智商很重要,情商更重要:35岁以前建立起人际关系网
2、人脉即财脉:如何搞好人际关系
3、交友有原则
4、善于沟通:35岁以前要锻炼出自己的演讲才能

第九章:九分习惯

习惯的力量是惊人的,35岁以前养成的习惯决定着你的成功的大小
1、积极思维的好习惯
2、养成高效工作的好习惯
(1) 办公室
(2) 生活可以不拘小节,但要把工作做细
(3) 学习聆听,不打断别人说话
3、养成锻炼身体的好习惯
4、广泛爱好的好习惯
5、快速行动的好习惯

第十章:十分自信

1、自信是成功的精神支柱
2、自信方能赢得别人的信任
3、把自信建立在创造价值的基础上
4、如何建立自信
(1) 为自己确立目标
(2) 发挥自己的长处
(3) 做事要有计划
(4) 做事不拖拉
(5) 轻易不要放弃
(6) 学会自我激励
(7) 不要让自己成为别人

第十一章 11个需要避开的成功陷阱

1、只有功劳,没有苦劳
2、不要"怀才不遇",而要寻找机遇
3、不要想发横财
4、不要为钱而工作,而让钱为你工作
5、 盲目跟风,人云亦云,人做我也做
6、 小富即安,不思进取,知足常乐
7、 承认错误而非掩饰错误
8、 脚踏实地而非想入非非
9、 野心太大而不是信心十足
10、反复跳槽不可取
11、眼高手低
12、不择手段

第十二章 十二分努力

没有人能随随便便成功
1、小不是成功,大不是成功,由小变大才是成功
2、中国社会进入微利时代:巧干+敢干+实干=成功
3、努力尝试就有成功的可能
4、做任何事情,尽最大努力
5、把事情当成事业来做
6、我看打工者
7、祝你早日掘到第一桶金

博后电话面试问题

1.你了解我们实验室的研究工作吗?(我回答从他们的网页及最近的文章了解一些。接着他就BalaBala地介绍他们实验室的研究情况,我听明白一半左右,只能不时表示理解。
2.你的博士课题研究内容是什么?(CV和研究兴趣)
3.你的研究结果说明什么?(概括回答了两句)
4.你想找什么样的实验室做博后?(我猜可能是不是问我是否喜欢他们实验室,我说找象他们实验室的研究背景,即做Cancer Biology的研究,好象在拍了马屁。)
5.你的长期目标是什么?(我回答如有机会在他们那做博后,先努力完成博后training program相关课题,然后找个大学里的位子或回国继续Cancer Biology的研究)
6.你的文章是否已经被接收?
7.你掌握那些技术?(详细说几种包括细胞生物学、分子生物学、病理学、免疫学技术,还有动物实验如nude mice, SCID mice 肿瘤模型建立等等。)
8.你是否做过细胞转染?如何做?(做过,脂质体法)
9.你实验室有多少人?
10.你是否曾在XXX单位工作?做什么?(大学与硕士及硕士毕业后工作的单位
11.你一天呆在实验室多长时间?
12.你一天花多少时间进行reading?读些什么书?
13.你什么时候博士毕业?
14.你什么时候能开始博后工作?
15.Any question to me ?(这里我问了两个与他课题有关问题,虽然表达不很好,但他能明白并回答了我。)
大概花了25分钟,我自己感觉虽然所有问题都基本能听明白,但因为口语不流利,回答有些结巴,当然他不时表示OK, great!之类。总体上我觉得这两个老米还顶nice,因为他们问问题时尽量放慢速度让你听明白。 最后他告诉我要等我一周后他才给我答复。真不知有没有戏。各位战友帮把把脉!
感觉顶紧张,过后脑子一片空白。
我的准备(当然感觉不充分):
1.熟悉自己的CV,Research interest,提炼自己的研究兴趣(概括成通俗的2~3点),我觉得这点表达清楚很重要,因为老板面试无非目的一是了解他和你能否能交流,二是看你专业是否扎实(理论与技术)。
2.熟悉老板的背景(他的网页)读1、2篇他最近的关键papers.
3.面试时将所有准备好的材料拿在手。
4.预先对CV中一些问题做答案并记住。当然可能用处不大,但会给自己思路清晰,因为交流不是按我们预先设计进行。

A guide in interview

1.your published papers.
2. prepare general questions as well as professional ones in your field.
i can give you my example for details, hope it will do help to you in your face-to-face interview.
1.  what job are you seeking?
I will complete my doctorate training, and I will go on to do research in a world renowned lab as my postdoc training and learning. The job I am seeking must be my interested one and cover, at least in part, my previous research.
2.  What do you think you might like to work for me?
First you are a living legend professor, who has won many great honors and made tremendous contribution in the cardiology. I am deeply impressed by your article style, very succinct and easy to understand, but often address an important issue of the field. Your research interest is stem cell transplant for heart diseases, which match my background and meet my interes.
3.  Tell me about yourself
I am 28, and I am doing research as a doctorate student in the State Key Laboratory of Experimental Hematology (Chinese Academy of Medical Science & Peking Union Medical College, the best medical college in China). I will graduate in July, 2006, one year in advance because of my good academic performance. My work mainly focuses on vasculogenesis, angiogenesis, stem cell transplantation (EPCs, MSC, HSC), cardiovascular diseases. I have published several papers in peer-reviewed international journals during my PhD training. I am young and eager to learn more. I am honored many awards such as Excellent Postgraduates, Excellent Student Scholarship, et al. I like playing football and long run such as marathon.
4.  What kind of salary do you like to receive?
I think NIH payment might be reasonable, but I will follow M.D. Anderson’s payment scale. I ask for time to mutually explore the position and my qualifications, and you will surely provide me a reasonable payment, which can support me and my wife.
5.  What qualifies you for this job?
My previous work mainly focuses on vasculogenesis, angiogenesis, stem cell transplantation (EPCs, MSC, HSC), cardiovascular diseases. I have obtained much knowledge in experiments and hands-on experience and techniques. My past quite match your present work and research direction, such as stem cell for heart diseases. In addition, I have passion and potential to learn more in a field I am interested in.
6.  What is your opinion of your present boss or co-worker?
My present boss is my mentor whose name is Zhong Chao Han. He is a very kind and able person, and last month he was honored as a member of French Academy of Science. He treated me kindly and always left much room for designing my research and helped me when I was in difficult in the experiments. I have many lab mates who helped me a lot. We cooperated with each other in a harmonious and friendly way, as you can see that two of my papers are co-authors, showing that I have team spirit with good communication skills.
7.  What is your greatest strength?
I will never give up once I set my goal to attain it. Perseverance and hard working with right methods can tackle any difficult. That is my strength.
8.  What are your chief liabilities?
In the interpersonal communication, I always express my thought without thinking too much of the feeling of others. Honest and frank are good, but I should know the good way to express under certain conditions, and try to express the same meaning in the different way or in different conditions. Communication is an art, and I need to learn more.
9.  With which other companies do you plan to interview?
I am eager to have interview opportunity with professors from prestigious universities like Harvard University, but my background must match their work, and my interest should be given priority.
10.  What is your toughest situation you have faced?
Once I was a clinical medical student, and I had little idea of the research. When I enter the present lab, I was frustrated about all the experiments, since I was unfamiliar with research. I am worried if I can achieve doctorate degree successfully. Things are always difficult at the beginning. After adapting to the new surrounding, I gradually get familiar with the research surroundings and get into the track. Now I have successfully accomplished the task of my mentor, who approved my graduation 1 year ahead.
11.  What are you future plans?
Short goals: to investigate the stem cell biology and cardiovascular diseases, and publish articles on the top journals. Long goals: Be a researcher in the field I am interested and have my own lab focusing on the field of interest to contribute what I have done to the world.
12.  Your work value?
I am most comfortable in a harmonious work atmosphere, where workmates can communicate smoothly and help each other warmly. I will challenge the difficult task and tackle it with my determination and perseverance. But I can also think independently and enjoy work independently. With eagerness to learn more, I have the great passion and enthusiasm in working with people to do research.
13.  Extracurricular activity?
I am fond of football, because this needs teamwork and cooperation to kick a goal. I am also crazy of long running, because it can strengthen my body, and build my iron will and perseverance. Exercising, relaxing with a football match, socializing with friends can also turn stress into productive energy and relieve the stress from research.
14.  What do you know about our company?
I have logged on to your website and know M.D. Anderson Cancer center, whose aim is to make cancer history. At M. D. Anderson Cancer Center, your mission is to eliminate cancer. Cardiology department provides the most advanced cardiac care to cancer patients with co-existing heart diseases and are particularly adept at treating cardiovascular complications of cancer and cancer therapies.
15.  What makes you want to work hard?
Naturally, material reward is an attraction. But I am more interested in the research, which will contribute to the better therapy of heart disease or cancer patients. I can derive from work the achievement and the satisfaction from research that I derive from it.
16.  How do you handle pressure and stress?
Everybody feels stress, but the degree varies. Under little stress, I feel I am highly efficient and doing thing quickly and effectively. But if the stress is too heavy, playing football, jogging, seeing movies, and having a talk with friends can relieve the stress and turn my stress into productive energy.

good luck and best wishes.
anymore question, please don’t hesitate to contact me: bzhoupumc@gmail.com

A pracitcal guide in postdoctoral application

1.  After reading many articles, you must have a general idea of who or which group is the leading one in your research field. Take down the corresponding author’s email address, and write to them that you are interested in their papers before you apply for postdoc position.
2.  Please remember that you must have one or tow original articles, otherwise you are in disadvantage in applying for postdoc. Write cover letter first, tell him your interest and your research background. Then compliment his excellent work published on Nature, cell…et al. Add the addresses, email, phone numbers of your references or recommending professors (Zhoubin-9).
3.  Make your CV, and you can refer to my example. (Zhoubin-10).
4.  Now send your cover letter, and CV to the PI (principle investigators) you find in the articles you read.
5.  you can find those PI’s email on those universities’ webpages. Type universities’ names in google, and you will surely find them, and I have found many information in such schools: Harvard u, Stanford u, Yale u, MIT, UCLA (university of california, Los Angeles), UC Berkeley, UC San Diego, Washington U at St. Louise, Washington U at Seattle, John Hopkins U, U of Pennsylvanian, U of Texas, MD Anderson Cancer Center, Baylor Medical college, Columbia U, UC San Francisco, Chicago U….many universities in US are excellent in the world. Also Karolinska Institute, Cambridge U, Oxford U…
6.  you can also search for opening positions, and this is the most efficient way! Like
http://www.med.harvard.edu/jobs/ http://www.jobs.ac.uk/cgi-bin/search.cgi?keywords=stem+cell&contract=00&catagories=0200&referer=medical
http://www.training.nih.gov/webforms/postdoctoral/application/adIndex.aspx
http://www.admin.ox.ac.uk/ps/gp/current/list.shtml#research
http://www.postdocjobs.com/jobseekers/search_keywords.shtml
http://ki.se/
http://aaas.sciencecareers.org/js.php?qField=All&qInd=Postdoctoral&qSort=smart&qMatch=all&pp=10&view=1&q=stem+cell
http://www.nature.com/naturejobs/index.html
http://www.tedjob.com/result.php?q=&c=71500&lc=1&ml=100&uslc=&oc=&pd=0&pt=0&it=0&fp=0&np=25&sb=1&brst=&cid=0&ps=3
7.  Also CHB welcome postdoc researchers.
8.  Then you will get 9 negative answers from those replying, most remaining unreplied. Do not get frustrated, continue sending your cover letter and CV everyday (50 everyday for a week). You are surely to get one or two positive reply. If your publication record is good and you are lucky, you may get a lot of positive reply.
9.  Write the reference letter for prof. Han, because he is usually too busy, and let him send the letter out for you from his mail box. And also prof. Wu Ke Fu is a good choice.
10.  If one PI in Standford want to have a phone interview, please read his articles (2-3) carefully, write down what he is doing, and other questions he may raise. (Zhoubin-11,12)
11.  type your CV, your paper, your Zhoubin-11,12 and prepare them before interview.
12.  You can have several interviews and finalize one offer you’d like.
13.  please tell him to send the official offer, not email offer. (Zhoubin-13).
14.  now ask him to send you DS2019 form for preparation of visa interview.
you can ask me for more detailed information if you need them. i would be of help to you if you write to bzhoupumc@gmail.com
good luck friends, and you are sure to find a good postdoc position.

破解秘笈

找代理在这里:
吸附代理 用代理猎狗 或 AD 可以吸附很多代理,代理猎狗简单方便
代理使用方法 http://extend.hk.hi.cn/~sunbird/freeproxy_why.html
(各种代理使用方法介绍)
代理服务器地址 http://www.salala.com/proxy_index.htm
(每日更新的,大部份是HTTP代理)
代理服务器地址 http://www.emaga.net/8341/myann
(每日更新的,大部份是SOCKS代理,既QQ代理)
文献代理 当然是鸭绿江啦
 
注册码在这里:
第六空间 http://www.sixthroom.com/down/qt/ser.rar (注册码大全下载)
注册码搜索 http://www.netpaste.com/code/
孤月注册码 http://www.guyue.com/key/
第二章——关于被入侵
简单说明:
经常有帖子说:“我中木马啦,怎么办?”、“我被攻击了”,“我的windows有问题,是不是被入侵啦?
”等等。哪么如果你怀疑系统被入侵的话,请你首先看看日志的记录或是有什么变化,然后你应该查看可疑进
程(win98需要用相关工具)、注册表启动项、服务、开放端口等,然后更新病毒库,杀毒。前提是你要有一定
的电脑常识并对你的系统比较了解,才能分别正常与否。如果你自己对电脑一窍不通,那在论坛别人也很难帮
助你。其实就像对付现实中的病毒一样,应该预防为主。杀毒软件和网络防火墙可以抵御绝大部分危险,自身
安全知识的提高则是最根本的保障。最新的病毒相关知识可以到杀毒软件公司的主页上找。另外,系统不正常
也可能是xx作失误引起的。这里不是“电脑零起点”,所以关于系统修复的问题,请不要在论坛提了。
相关工具:
Active Ports 监视自己电脑的端口,并做出相应处理。http://www.sixthroom.com/down/aq/cn_aports.rar
windows优化大师5.1 它的进程管理功能不错。更是目前最好的系统优化软件。
http://www.sixthroom.com/down/aq/wom.rar
Windows 基准安全分析器 1.0 (特别推荐,详细资料看下载说明吧)
http://www.sixthroom.com/down/admin/aq/mbsasetup.msi
Fport-2.0 查看端口关联的进程 (应用于9x/me)http://www.sixthroom.com/down/admin/aq/fport.zip
mport 比fport更胜一筹的工具 http://www.sixthroom.com/down/admin/aq/mport.zip
KV3000江民杀毒王(正式版+钥匙盘)
http://www.kxweb.net/down/down.asp?downid=1&id=14
金山毒霸2003正式版
http://www.kxweb.net/down/down.asp?downid=1&id=11
相关资料:
104种木马的清除方法http://asp2.6to23.com/ebug88/net/article/net004.htm
清除恶意网页的破坏 http://assistant.3721.com/safe.htm
2000系统进程总列表 http://sinbad.zhoubin.com/read.html?board=Win&num=73
木马的检测、清除及其预防 天网安全检测 http://sky.net.cn/main/view.php?cid=170
蓝盾安全检测 http://www.bluedon.com/bluedonserver.asp
第三章——基础知识和入侵步骤
简单说明:
电脑和网络知识可算是做黑客的基础的基础,至少你要先了解了它们再来看下面的文章。看完这部分的文章,
你也只是算站到了门口,路还长着呢。这里我再多说几句关于入侵步骤的话,给新手做个引导。所谓入侵,可
以理解为未授权的访问。既然是未授权的,就需要借助一些非常规的手段,即通常所说的利用漏洞。
基础知识网址:
http://tech.163.com/tm/010213/010213_14563.html
http://tech.163.com/tm/010213/010213_14564.html
http://tech.163.com/tm/010214/010214_14632.html
http://tech.163.com/tm/010214/010214_14634.html
http://tech.163.com/tm/010214/010214_14638.html
一、要利用漏洞首先要发现它。端口扫描和漏洞扫描就是“敲门砖”。可以对大量目标做一般扫描,也可以对
单一目标做重点扫描。或者两者结合。当你对漏洞熟悉时,你可以只通过端口扫描就能了解目标的可能有的漏
洞。这样既提高效率又不易被记录日志。
几种扫描器的简单使用教程:http://www.chinesehack.org/file/show.asp?id=5614
入侵技术介绍——目标探测:http://www.sixthroom.com/ailan/f … mp;RootID=279&I
D=279
二、找到漏洞后的利用问题,是千差万别的。这正是新手学要学习的地方之一。很多要依靠自己的知识积累及
对系统的掌握及熟悉程度,这里就不多说了。 下面提供几个提供漏洞资料的网站供大家参考。
天极网 http://www.myhard.com/76284138209935360/index.shtml
绿盟科技 http://www.nsfocus.net/index.php?act=sec_bug
五月安全网 http://bgbbs.www70.cn4e.com/article.asp?cat_id=2
中国信息安全 http://www.chinafirst.org.cn/ruodian/advisory.php
三、利用漏洞的目的是什么呢?是控制对方,即是获得远程shell。shell这个概念是从UNIX下继承过来的,是
指与xx作系统核心的一种交互方式和界面。典型的例子是telnet。得到shell的办法有很多种,比如通过系统自
带的telnet,终端服务。或者用木马和工具提供的,如winshell,冰河等等。以下介绍两篇SHELL编程的文章给
 
 
 
四、shell是有权限差别的。最高权限——管理员权限才是我们的目标。所以有时会有提升权限的问题。当然,
这也是利用了漏洞。以下介绍几篇文章。
Win2K 提升权限漏洞
http://www.yesky.com/20010530/182273.shtml
Microsoft SQL Server Webtasks权限提升漏洞
http://it.rising.com.cn/newSite/ … 10/31-153502052.htm
Linux kernel ptrace提升权限漏洞
http://levinstorm.myetang.com/main/holes/unix/005.html
NT/2000提升权限的方法小结
http://home.lufeng.net/wolf/Computer/luodong/2000tisheng.htm
IIS提升权限漏洞
http://www.ddhome.net/hole/14.htm
五、有了shell还要扩大它,就是进一步获得更好用的shell。命令行的到图形的、功能少的到多的。于是才有
了“怎么开3389”,“怎么上传”之类问题。在这介绍给大家介绍一下现在最流行的3389吧。更多的文章请到w
ww.sixthroom.com。
远程开启3389终端服务
http://www.sandflee.net/wawa/3389-1.htm
建立你的3389肉鸡
http://www.sandflee.net/wawa/sz-3389.htm
六、为了下次还能控制目标,你需要保持shell。做一个好的后门又是一种“学问”。克隆帐号、埋木马、破ad
ministrator的密码,手段不一而足。各位慢慢学吧。
永远的后门 http://www.ttian.net/article/show.php?id=259
Win2000 下Ping 后门的简单实现
http://www.landun.org/wenzhang/images/xiaoran/article/154.html
帐号克隆
http://www.netXeyes.org/CA.exe
帐号检查
http://www.netXeyes.org/CCA.exe
暴力破解LC4
http://www.andyxu.net/banana/tools_2/lc4.rar
端口知识介绍:
相关工具:
扫描端口是扫描器的基本功能,工具太多了。提供两个给大家,更多的参看后面。
X-Port.zip下载 http://www.xfocus.net/download.php?id=327
PortReady下载 http://dotpot.533.net/dpsoft/PortReady1.6.zip
相关资料:
端口扫描简介 http://www.netscreen.com.cn/suml/zhishiyy/jingong/duankougj.htm0
系统服务及木马默认端口表
http://www.pttc.yn.cninfo.net/dtsy/nettech/netanquan/41250634.htm
端口大全 http://www.sixthroom.com/ailan/f … otID=268&ID=268
常用默认端口列表及功能中文注解
http://www.sixthroom.com/ailan/f … otID=267&ID=267
常见端口详解及部分攻击策略
相关资料:
如何成为一名黑客 http://263.aka.org.cn/Docs/hacker-howto_2001.html
提问的技巧
http://bbs.online.sh.cn/eliteart … a344fb3b6efa4377e48
ae
TCP/IP基础 http://www.linkwan.com/gb/routertech/netbase/tcpip.htm
网络攻防教程 http://www.netsill.com/wenzhang/list.asp?id=115
网络入侵步骤及思路 http://www.iamguo.com/bh3/hackguide2.htm
拒绝背后黑手的窥探 IPC$漏洞大揭秘
http://computer.szptt.net.cn/2002-04-27/nw2002042700109.shtml
全球ip分配表 http://519519.vicp.net/lb5000//usr/3/3_11.txt
黑客入门教程 http://www.pttc.yn.cninfo.net/dtsy/nettech/netanquan/43934529.htm
菜鸟XXX客快速入门
http://netsafe.ayinfo.ha.cn/sqxw/2002117172333.htm
几种流行的入侵工具与讲解
http://www.pttc.yn.cninfo.net/dtsy/nettech/netanquan/44188520.htm
常见端口详解及部分攻击策略
http://www.pttc.yn.cninfo.net/dtsy/nettech/netanquan/-90637.htm
攻击的各种级别
http://www.pttc.yn.cninfo.net/dtsy/nettech/netanquan/39825935.htm
 
第四章——关于命令的使用
简单说明:
windowsNT/2000下有丰富的cmd可供使用,其作用也是巨大的。完全值得去熟练掌握她它们。windows2000本身
就提供了详细的命令帮助。在开始菜单–》帮助中可以搜索到“windows 2000 命令参考”。强烈建议各位新手
花些时间仔细看一遍。装了比如IIS等软件,就会有新的命令(iisreset),在命令行方式下加/?或-h参数可以
查看帮助,其他内置的命令当然也可以。还有就是掌握一些常用的DOS命令也是非常有必要的。因为WINSOWS不
管发展到哪一天,它也都不可能取代DOS,至少现在还不行。NET命令更是最常用的网络命令,想做一个黑客,
更是你所必需掌握的。掌握一些LINUX命令也是很有必要的。希望下面的资料对大家有所帮助。
相关帖子:
DOS下常用网络相关命令解释
http://www.jiejingwang.com/list.asp?id=521
入门网络命令
http://www.jiejingwang.com/list.asp?id=520
Win2000命令全集 http://www.sixthroom.com/ailan/f … otID=343&ID=343
Windows XP下cmd命令详解
TELNET命令,http://www.sixthroom.com/ailan/f … otID=277&ID=277
net命令基本用法:http://www.yy0730.com/1/1/1/wen/list.asp?id=12
tftp命令: 由于TFTP命令过于简单,请自行使用“TFTP /?”进行查询。下面在给出一个参照的
实例:http://levinstorm.myetang.com/main/tutorials/hacking/006.html
一般入侵所需要的几个常用命令:
http://www.yixindz.com/badschool/hacker/hack_commands.htm
Linux 的常用网络命令
http://www.jiejingwang.com/list.asp?id=522
第五章——关于windows98
简单说明:
这类问题有两种:一是怎样入侵win98系统,二是在win98怎样入侵。
由于98的网络功能并不完善,使得问题的解决远没有像对2000那样“丰富多采”。98默认没有什么网络服务启
动,众所周知漏洞是由于各种服务的功能设计并不完美,所以才产生的,也就是说没有漏洞也就很难入侵,找不到
什么可利用的漏洞。这给入侵带来的困难是难以想像的.共享入侵,算是最常见的攻击方式了。
相关资料:
共享入侵 http://www.sixthroom.com/ailan/f … otID=269&ID=269
入侵windows98系统 http://www.sixthroom.com/ailan/f … otID=270&ID=270
win98入侵网吧详解 http://www.sixthroom.com/ailan/f … otID=271&ID=271
其实还有些方法,比如嗅探密码、发病毒和木马到信箱、甚至用QQ“联络感情”再传个绑木马的Flash等,没什
么意思,就此打住(这是前辈说的,他老人家都说打住了,哪我也打住,其实是我也不知道说什么,呵呵)。
基于同样的理由,98不是一个好的攻击平台。如果只是端口扫描,那么superscan可以胜任。web类的漏洞扫描x
-scan也可以。但涉及ipc$的弱口令、漏洞、远程控制工具以及连接一些服务(如sql)就要“基于NT技术构建
”的os了。好在3389终端服务的客户端可以是98,所以先搞一台开3389的肉鸡就算是回避了问题。如果你还在
用98,诚恳的建议你:请用2000。如果你在网吧,先试试入侵网吧服务器。(在这里我也要加一句就是如果你
是用98系统的话,哪么选择榕哥的流光98版也是不错的。不过有很多功能也还是无法使用)。
鉴于98的问题技术含量不高、没有深入探讨价值,所以就谈到这里吧。(个人观点)
相关工具:
简单说明:因为前辈的软件都是给出的黑白网络的地址,现在黑白关站了(好像是星坤自己买了服务器就还会
开),所以地址大多失效了,在这里我重新做一下整理,所有软件均测试可下。
NetPass 1.0 破解98共享密码 http://lovezxd.myetang.com/indexpage/indextool/NetPass.zip
cain v2.5 综合破解工具 http://www.qq888.com/down/download.asp?Did=968
exeBinderZ 1.3 EXE捆绑机 http://www.heibai.net/download/show.php?id=3028&down=3
SUPERSCAN3.0中文版下载
http://download.pchome.net/php/d … anv30.exe&svr=3
X-SCAN2.3下载 http://www.xfocus.net/download.php?id=366
流光98下载 http://www.netxeyes.com/cfluxay2k1for98setup.exe(因榕哥不愿意看到加了补丁的作品,为了
尊重他老人家,所以这里不提供补丁下载,需要的就自己去找吧)。
终端服务客户端 http://arm.533.net/hack/winterminal.zip (既3389连接器)
第六章——关于破解邮箱
简单说明:
现在破解邮箱的贴子以经不是很多,至少比前半年少了很多了,但是还是有,所以就给出下面一点资料,希望
能帮到大家。偷看别人信件是违法行为,请不要偷看他人信件,如果想掌握技术的话,哪你可以自己解自己的
邮箱,这样既掌握了技术,又不会有人找你麻烦。
相关工具:
溯雪 http://www.netxeyes.org/dansnowb7setup.exe
溯雪中文补丁 http://www.netxeyes.org/dansnowb7_cn.zip (先安装英文版,释放到原英文版目录即可)
相关资料:
溯雪教程 http://1123.myrice.com/jiao9/j1095.htm
溯雪破解21cn信箱的完整教程 http://www.521hacker.com/download/show.php?id=1263&down=2
 
 
 
 
第七章——关于解除网吧、网页限制
简单说明:
现在关于网吧破解,网页限制破解的贴子正好和破解邮箱的相反,越来越多,各种管理软件也是层出不穷,可
是自古以来就是道高一尺,魔高一丈,下面的资料供大家参考吧。记住不要太过份:
三招破解禁用鼠标右键的网站:
http://www.sixthroom.com/ailan/f … otID=272&ID=272
破解硬盘还原卡: http://www.sixthroom.com/ailan/f … otID=273&ID=273
破解硬盘还原卡:http://www.sixthroom.com/ailan/f … otID=274&ID=274
网吧封锁权限破解:http://www.sixthroom.com/ailan/f … otID=275&ID=275
破解美屏: http://tty.yyun.net/wenzh/youjian/21.htm#MAILLISTDOC22
破解网吧限制:http://www.21up.net/bbs/plugins/netbar.html
在线破解网吧限制:http://webmaster.diy.163.com/cy07
万象破解,网吧入侵:http://club.6to23.com/389/show.asp?t=389&ti=8733
相关工具:
网吧幽灵1.8下载
http://61.159.224.188/makesoftur … 6F62707C6C696B62677
美屏破解:http://members.xoom.virgilio.it/baikaixin/mppj.exe
多种网吧限制破解软件下载:http://webmaster.diy.163.com/cy07
第八章——关于流光
简单说明:
流光实在是个十分出色的综合工具。是国人的骄傲。还没用过的立刻下载一个装上,自己体验一下吧。使用前
建议看看自带的说明。 (不过个人看法,新手最好不要使用流光,因为它的强大会让你变的懒惰。)
下载地址:
流光4.7 http://www.netxeyes.org/fluxay47/fluxay47build3200setup.exe
流光98下载 http://www.netxeyes.com/cfluxay2k1for98setup.exe
 
 
常见问题回答:
1,我下载的流光杀毒软件说有病毒,怎么会事?
答:一些杀毒软件的确认为流光是木马(谁让它这么有名呢,呵呵)。如果杀毒,流光将无法使用,所以只有
让杀毒软件停止监测。必竟要得到一些东西的时候你就要做好准备失去一去些什么。呵呵,不过没关系的,它
不会对你的系统构成任何威胁。
2,为什么有些肉鸡安装sensor失败?
答:如果拷贝文件出错,可能是因为目标admin$共享未开放。请采用其他shell,在目标主机上执行net share
admin$命令。
如果启动服务失败,可能因为使用的端口已经被占用,换个试试;也可能目标有杀毒软件删除了文件,或者有
防火墙阻止sensor连网,没有什么好的解决办法。
3,为什么一些流光扫到的密码不能用?
答:可能是误报,将扫描速度降低些再扫。对于winxp目标,也会产生误报。也可能因为你用扫到的非管理员帐
号来连接目标,请在ipc$扫描选项里将“只对administrators组进行猜解”选上。(以上一段基本全部都是前
辈说的话,没做改动。呵呵,因为目前也就有这几个共性问题,还有一点要叮嘱大家的是看看流光的帮助,仔
细的看,哪其实是最好的流光教程。)还要谢谢前辈为我们这些小鸟考虑的这么周到,连可能碰到的问题都想
到了,在这里在一次的对前辈表示感谢。
第九章——关于字典
简单说明:
xx作系统将用户和密码信息加密后存放在特定的地方和文件中。典型的如windowsNT里的sam文件和Linux里的et
c/passwd。由于加密算法是单向散列的,所以几乎不可能找到逆向算法。因此,不得不使用同样的算法加密各
种口令,将结果去吻合散列值。字典就是有选择地储存了一批口令的文件。例如生日、常用单词、中文名字的
拼音等。著名的破解密码的工具,一般自带一些字典。也可以使用字典工具制作符合要求的字典。
相关工具:
乱刀 小榕出品,破解UNIX系统的密码 http://www.netxeyes.org/bladese.exe
john 最著名的UNIX密码破解工具(windows版) http://arm.533.net/crack/john.zip
万能钥匙 http://arm.533.net/crack/xkey.zip
Idgwin下载 http://secrecy.ayinfo.ha.cn/hack/dict/idgwin.zip(字典智能生成器(并非随机生成))。
xkeyset下载 http://secrecy.ayinfo.ha.cn/hack/dict/xkeyset.exe(造字典工具中的精品,根据你的需要一
步步提示生成字典。)
LC4超管密码破解软件( 注册版)http://www.51299.com/OICQ/2002/b05/25/lc4setup.zip
乱刀中集成了榕哥的大作“黑客字典III”感兴趣的朋友可以试试!
第十章——关于ipc$、空连接和默认共享
简单说明:
******首先需要指出的是空连接和ipc$是不同的概念。空连接是在没有信任的情况下与服务器建立的会话,换
句话说,它是一个到服务器的匿名访问。ipc$是为了让进程间通信而开放的命名管道,可以通过验证用户名和
密码获得相应的权限。有许多的工具必须用到ipc$。默认共享是为了方便远程管理而开放的共享,包含了所有
的逻辑盘(c$,d$,e$……)和系统目录winnt或windows(admin$)。******个人认为这段很重要,因为很多人
根本就不知道什么是空连接什么是IPC$.建议不知道的朋友仔细看一下吧.这种问题,不应该不知道的.
相关帖子:
拒绝背后黑手的窥探 IPC$漏洞大揭秘
http://www.sixthroom.com/ailan/f … otID=281&ID=281
IPC入侵全攻略 http://www.sixthroom.com/ailan/f … otID=278&ID=278
win2k中C驱等的默认共享是怎么回事
http://www.sixthroom.com/ailan/f … otID=282&ID=282
取消默认共享≠安全 http://js00.51.net/23/wudi/show. … p;id=20021017212524
常见问题和回答:
一、怎样建立空连接,它有什么用?
答:使用命令 net use \\IP\ipc$ "" /user:"" 就可以简单地和目标建立一个空连接(需要目标开放ipc$)。
对于NT,在默认安全设置下,借助空连接可以列举目标用户、共享,访问everyone权限的共享,访问小部分注
册表等,没有什么利用价值。对2000作用就更小了。而且实现也不方便,需借助工具。如果你不理解“没用”
的东西为什么还会存在,就看看“专业”的解释吧:
在NT/2000下的空连接 http://www.sixthroom.com/ailan/f … otID=280&ID=280
解剖WIN2K下的空会话 http://www.sixthroom.com/ailan/f … otID=283&ID=283
二、为什么我连不上IPC$?
答:1,只有nt/2000/xp及以上系统才可以建立ipc$。如果你用的是98/me是没有该功能的。
2、确认你的命令没有打错。正确的命令是: net use \\目标IP\ipc$ "密码" /user:"用户名"
注意别多了或少了空格。当用户名和密码中不包含空格时两边的双引号可以省略。空密码用""表示。
3,根据返回的错误号分析原因:
错误号5,拒绝访问 : 很可能你使用的用户不是管理员权限的,先提升权限;
错误号51,Windows 无法找到网络路径 : 网络有问题;
错误号53,找不到网络路径 : ip地址错误;目标未开机;目标lanmanserver服务未启动;目标有防火墙(端
口过滤);
错误号67,找不到网络名 : 你的lanmanworkstation服务未启动;目标删除了ipc$;
错误号1219,提供的凭据与已存在的凭据集冲突 : 你已经和对方建立了一个ipc$,请删除再连。
错误号1326,未知的用户名或错误密码 : 原因很明显了;
错误号1792,试图登录,但是网络登录服务没有启动:目标NetLogon服务未启动。(连接域控会出现此情况)
错误号2242,此用户的密码已经过期 : 目标有帐号策略,强制定期要求更改密码。
4,关于ipc$连不上的问题比较复杂,本论坛没有总结出一个统一的认识,我在肉鸡上实验有时会得出矛盾的结
论,十分棘手。而且知道了问题所在,如果没有用其他办法获得shell,很多问题依然不能解决。问题过于细致
后就不适合在本文章里探讨了。各位看着办吧,呵呵。
三、怎样打开目标的IPC$?
答:首先你需要获得一个不依赖于ipc$的shell,比如sql的cmd扩展、telnet、木马。当然,这shell必须是adm
in权限的。然后你可以使用shell执行命令 net share ipc$ 来开放目标的ipc$。从上一问题可以知道,ipc$能
否使用还有很多条件。请确认相关服务都已运行,没有就启动它(不知道怎么做的请看net命令的用法)。还是
不行的话(比如有防火墙,杀不了)建议放弃。
四、怎样映射和访问默认共享?
答:使用命令net use z: \\目标IP\c$ 密码" /user:"用户名" 将对方的c盘映射为自己的z盘,其他盘类推。
如果已经和目标建立了ipc$,则可以直接用IP加盘符加$访问。比如 copy muma.exe \\IP\d$\path\muma.exe
。或者再映射也可以,只是不用用户名和密码了:net use y: \\IP\d$ 。然后 copy muma.exe
y:\path\muma.exe 。当路径中包含空格时,须用""将路径全引住。
五、如何删除映射和ipc$连接?
答:用命令 net use \\IP\ipc$ /del 删除和一个目标的ipc$连接。
用命令 net use z: /del 删除映射的z盘,其他盘类推。
用命令 net use * /del 删除全部。会有提示要求按y确认。
六、连上ipc$然后我能做什么?
答:能使用管理员权限的帐号成功和目标连接ipc$,表示你可以和对方系统做深入“交流”了。你可以使用各
种命令行方式的工具(比如pstools系列、Win2000SrvReskit、telnethack等)获得目标信息、管理目标的进程
和服务等。如果目标开放了默认共享(没开你就帮他开),你就可以上传木马并运行。也可以用tftp、ftp的办
法上传。像dwrcc、VNC、RemoteAdmin等工具(木马)还具有直接控屏的功能。如果是2000server,还可以考虑
开启终端服务方便控制。这里提到的工具的使用,请看自带的说明或相关教程。
七、怎样防止别人用ips$和默认共享入侵我?
答:A、一种办法是把ipc$和默认共享都删除了。但重起后还会有。这就需要改注册表。
1,先把已有的删除
net share ipc$ /del
net share admin$ /del
net share c$ /del
…………(有几个删几个)
2,禁止建立空连接
  首先运行regedit,找到如下主键[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA]
把RestrictAnonymous(DWORD)的键值改为:00000001。
  3,禁止自动打开默认共享
 
对于server版,找到如下主键[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Para
meters]把AutoShareServer(DWORD)的键值改为:00000000。
对于pro版,则是[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters]把Au
toShareWks(DWORD)的键值改为:00000000。
B、另一种是关闭ipc$和默认共享依赖的服务(不推荐)
net stop lanmanserver
可能会有提示说,XXX服务也会关闭是否继续。因为还有些次要的服务依赖于lanmanserver。一般情况按y继续
就可以了。
C、最简单的办法是设置复杂密码,防止通过ipc$穷举密码。但如果你有其他漏洞,ipc$将为进一步入侵提供方
便。
D、还有一个办法就是装防火墙,或者端口过滤。防火墙的方法就不说了,端口过滤看这里:
过配置本地策略来禁止139/445端口的连接:
http://www.sixthroom.com/ailan/f … otID=284&ID=284
以上问题部份基本未做修改。原因很简单应该说的,和能想到的,前辈都写出来了。
 
 
 
第十一章——关于扫描出的漏洞
简单说明:
很多扫描器都有漏洞扫描功能。当你获得了一些主机的漏洞列表时,不要急着把它们帖在论坛上,期望别人来
为你分析和告诉你利用的方法。你应该首先尝试自己完成这些。扫描出的漏洞并不是都有用的,一部分漏洞过
时了,一部分是误报。如果你希望了解的多一些,最好经常到发布漏洞比较快的网站走一走,漏洞的利用是一
个不段积累的过程。时间长了相信你就体会到了。
漏洞搜索:
相关帖子:
一个CGI漏洞的发现和利用
http://www.sixthroom.com/ailan/f … otID=285&ID=285
cgi漏洞大全 http://www.sixthroom.com/ailan/f … otID=293&ID=293
常见CGI漏洞及应对二 http://www.sixthroom.com/ailan/f … otID=286&ID=286
常见CGI漏洞及应对一 http://www.sixthroom.com/ailan/f … otID=287&ID=287
Windows 2000漏洞集锦1
http://www.sixthroom.com/ailan/f … otID=288&ID=288
Windows 2000漏洞集锦2
http://www.sixthroom.com/ailan/f … otID=289&ID=289
Windows 2000漏洞集锦3
http://www.sixthroom.com/ailan/f … otID=290&ID=290
Windows 2000漏洞集锦4
http://www.sixthroom.com/ailan/f … otID=291&ID=291
Windows 2000漏洞集锦5
http://www.sixthroom.com/ailan/f … otID=292&ID=292
ASP漏洞大全 http://www.sixthroom.com/ailan/f … otID=294&ID=294
IIS漏洞整理一 http://www.sixthroom.com/ailan/f … otID=295&ID=295
IIS漏洞整理二 http://www.sixthroom.com/ailan/f … otID=296&ID=296
中国网络安全响应中心各种漏洞大全 http://www.cns911.com/holes/linux/list.php
第十二章——关于提升权限
简单说明:
黑客的最终目标就是得到root(即win中的admin)权限。一个真正的黑客会把一次入侵当做是自己的一件作品,
不会轻易放弃,但是有些漏洞(典型的如Unicode漏洞、ASP木马)不能直接获得管理员权限,所以必然需要提
升权限。一些新手可能会犯这类错误,以为中了木马、获得了shell就能控制一切。结果就出现“为何不能加用
户”、“为何不能开3389”等问题。2000及更高版本os承袭了NT的安全结构,多重机制环环相扣来保障安全,
特别是帐户安全。无奈安全系统过于庞大,多少会出现漏洞,于是我们就有机会了。 还要补充一点,就是在拿
到一个现成的后门软件,或是一个木马的时候,一定要先看看说明。至少你应该知道这个后门运行后的效果吧
?更有些人上传了某个后门软件或是木马到目标后就认为完事了,你不执行它就是传个地雷上去又有什么用呢
相关工具:
erunasx 利用Debug Registers漏洞提升权限 http://www.qq888.com/down/download.asp?Did=796
Windows NT/2000权限提升工具,可以将任意用户提升到SYSTEM级别的权限。漏洞出在smss.exe中的DEBUG子系
统,所有普通用户都可以通过该漏洞获得对系统中任意进程或线程句柄的控制,从而可以以SYSTEM或管理员权
限执行任意命令。2、使用方法:假设我们已经获得一台机器上的一个GUEST用户(或其他普通用户),现在我
们要这个工具来获得系统最高权限。进行如下步骤:把ERunAsX.exe和ERunAsX.dll这两个文件复制到目标主机
上可访问的目录下,例如C:\下。以GUEST身份运行"ERunAsX 要执行命令",例如"ERunAsX cmd.exe",这时执行
的命令是以SYSTEM 权限运行的…(请注意:具体使用以软件内英文说明为准,内附该BUG解决办法)
PipeUpAdmin 对sp1及更低有效 http://maopao.com/down/download.asp?Did=69
ISPC 利用IIS的漏洞,详见自带说明 http://www.cnsq.net/sq88/down/show.asp?id=572&down=1
PHPBB论坛权限提升
http://www.newyouth.org/softdown … .0.exploit_code.zip
WIN帮助文件溢出(可用于XP)
http://www.newyouth.org/softdown … ack/chmoverflow.zip
NT/2K权限提升工具GetAdmin下载 http://www.csdn.net/cnshare/soft/openfile.asp?kind=1&id=9807
相关帖子:
NT/2000提升权限的方法小结
http://www.sixthroom.com/ailan/f … otID=297&ID=297
关于WIN2000的入侵,以及安全防御等问题(文章包含一次利用U漏洞提高权限的过程)
http://www.sixthroom.com/ailan/f … otID=298&ID=298
UNICODE漏洞介绍及入侵
http://www.sixthroom.com/ailan/f … otID=299&ID=299
怎样提升权限,做后门
http://www.sixthroom.com/ailan/f … otID=300&ID=300
一般用户获取NT服务器Admin权限的方法
http://www.sixthroom.com/ailan/f … otID=302&ID=302
Windows NT4的安全结构(对新手有些难,了解一下吧)
 
 
 
 
第十三章——关于做代理和跳板
简单介绍:
代理服务器英文全称是Proxy Cerver,其功能就是代理网络用户去取得网络信息。形象的说:它是网络信息的 中转站。在一般情况下,我们使用网络浏览器直接去连接其他Internet站点取得网络信息时,须送出Request信号来得到回答,然后对方再把信息以bit方式传送回来。代理服务器是介于浏览器和Web服务器之间的一台服务器,有了它之后,浏览器不是直接到Web服务器去取回网页而是向代理服务器发出请求,Request信号会先送到代理服务器,由代理服务器来取回浏览器所需要的信息并传送给你的浏览器。而且,大部分代理服务器都具有 缓冲的功能,就好象一个大的Cache,它有很大的存储空间,它不断将新取得数据储存到它本机的存储器上,如果浏览器所请求的数据在它本机的存储器上已经存在而且是最新的,那么它就不重新从Web服务器取数据,而直接将存储器上的数据传送给用户的浏览器,这样就能显著提高浏览速度和效率。更重要的是:Proxy Server (
代理服务器)是 Internet链路级网关所提供的一种重要的安全功能,它的工作主要在开放系统互联 (OSI) 模型 的对话层,有了对代理的了解,相信你也认识到了什么是跳板。
相关工具:
SocksCap 2.2 SOCKS调度工具 http://www.123gz.com/dzc/download/sc32r231.exe
SkSockServer1.04 代理跳板 http://www.123gz.com/dzc/download/sksockserver.zip
Snake跳板傻瓜版 http://www.123gz.com/dzc/download/sgtb.zip
代理猎手V3.1Beta1简装版 http://www.123gz.com/dzc/download/proxyhunter.zip
FTP Serv-U 4.0 正式汉化版,最常用的ftp服务程序
http://61.159.224.188/makesoftur … 627E207574756375737
slimftp 隐蔽的ftp服务器
http://www.whitsoftdev.com/files/slimftpd.zip
天雁WEB服务器 不用安装的小型web服务程序
相关帖子:
代理、肉鸡、跳板的概念
http://www.sixthroom.com/ailan/f … otID=305&ID=305
代理服务器(Proxy)完全解析
http://www.sixthroom.com/ailan/f … otID=307&ID=307
如何使用代理服务器 http://www.sixthroom.com/ailan/f … otID=309&ID=309
简单制作跳板 http://www.123gz.com/dzc/sksockserver-cusky.htm
Serv-U设置教程 http://www.enanshan.com/ftp/
SocksCap32 使用详解
http://www.123gz.com/dzc/sockscap32.htm
在肉鸡上安装FTP服务器
http://www.sixthroom.com/ailan/f … otID=306&ID=306
利用 unicode 漏洞,轻松建立自己的代理服务器
http://www.123gz.com/dzc/sksockserver-nicky-1.htm#top1
特别推荐猎手与蚂蚁收藏馆 http://www.123gz.com/ (绝对值得一看)
第十四章——关于终端服务(3389)
简单说明:
windows终端服务提供了通过作为终端仿真器工作的“瘦客户机”软件远程访问服务器桌面的能力。图形界面和不影响当前本地用户的特性是它的最大优点。由于它是2000server及以上版本自带的功能,因此成为一个绝好的“后门”而倍受青睐。而且win98也可以成为客户端,这使得在网吧“工作”成为可能。有一点需要强调一下使用客户端登陆远程主机对当前工作的用户没有影响,而且一切动作本地用户都是看不到的。也就是说远程登陆和本地用户是在不相同的空间,两者互不干扰。
相关工具:
WIN2000客户端
http://zudu2000.myetang.com/soft/win2k.rar
winxp下的客户端 功能比2000下的更强大
http://zudu2000.myetang.com/soft/windowsXP.zip
终端服务程序的一个补丁 使本地和远程间能复制文本
http://www.sandflee.net/wawa/tools/rdpclip_hotfix.exe
web版终端客户端 使用浏览器调用ActiveX控件访问终端服务
http://www.enanshan.com/down/tswebsetup.exe
C3389.EXE 修改终端服务端口号的工具
http://www.sandflee.net/down/show.asp?id=228&down=1
Win2k终端服务器端所需文件包
http://www.netsill.com/download/download.asp?Did=1965
3389自动安装程序-djshao正式版5.0
http://netsill.com/download/download.asp?Did=2019
开启3389工具(如果要想让远程主机开启WIN2000的终端服务,请把3389.exe也传到远程主机上并运行。然后等
待一个漫长的时间(由于是无人执守安装)。就可以看到远程主机的3389端口会被打开。)
http://netsill.com/download/download.asp?Did=1991
W2K终端服务客户端安装版
http://www.sandflee.net/down/show.asp?id=39&down=1
相关帖子:
关于远程启动终端服务的帖子
http://www.sixthroom.com/ailan/f … otID=385&ID=385
终端服务问题常见问答
http://www.sixthroom.com/ailan/f … otID=386&ID=386
图文讲解输入法漏洞入侵
http://www.sandflee.net/txt/list.asp?id=22
3389自动安装工具教程
http://netsill.com/download/download.asp?Did=2068
3389动画教程(密码china)
http://netsill.com/download/download.asp?Did=1990
修改终端客户端端口动画教程
http://netsill.com/download/download.asp?Did=2009
3389资料 http://www21.brinkster.com/srob/wawa/wawa/3389txt.htm
第十五章——关于克隆帐号
简单说明:
克隆帐号的原理简单的说是这样:在注册表中有两处保存了帐号的SID相对标志符,一处是SAM\Domains\Account\Users下的子键名,另一处是该子键的子项F的值中。这里微软犯了个不同步它们的错误,登陆时用的是后者,查询时用前者。当用admin的F项覆盖其他帐号的F项后,就造成了帐号是管理员权限但查询还是原来状态的情况。即所谓的克隆帐号。(前辈就是前辈把大家想到的都写出来了,我实在不知道这里在加些什么了。看来也只有这样了。大家如果还有什么不明白的就到论坛里发贴子吧。
具体的看这里:
解剖安全帐号管理器(SAM)结构
http://www.sixthroom.com/ailan/f … otID=387&ID=387
明白原理后就可以手动或者用现成的工具克隆帐号了。
相关工具:
克隆ca.exe http://www.netxeyes.org/CA.exe
检查克隆cca.exe http://www.netxeyes.org/CCA.exe
手动克隆需要SYSTEM权限,用它 psu.exe
http://www.sandflee.net/down/show.asp?id=176&down=1
相关帖子:
工具克隆:ca和cca 请访问作者主页 http://www.netxeyes.org/main.html
psu用法:psu.exe提升为system权限
http://www.sixthroom.com/ailan/f … otID=390&ID=390
手动克隆:如何克隆管理员帐号
http://www.sixthroom.com/ailan/f … otID=388&ID=388
如何克隆管理员帐号的补充
常见问题和回答:
1,使用ca时,出现connect **.**.**.** …Error是怎么会事?
答:ca和cca需要目标开放ipc$,请确认可以与目标建立ipc$。参见“关于ipc$和空连接”
2,使用ca时,出现“Processing….ERROR”是怎么会事?
答:这说明对方主机缺少文件msvcp60.dll,想办法传个过去放在系统目录下就可以了。
3,克隆过程没有错误,但cca没有显示该帐号克隆成功,无法使用被克隆的帐号。
答:这一般是因为对方主机是域控制器,注册表中sam结构不同,工具失效。暂时无法解决。
4,手动克隆无法访问注册表SAM键怎么办?
答:在命令行方式,可以使用psu工具获得SYSTEM权限,从而访问SAM键。详见上面说明。
在图形界面,运行regedt32.exe,找到SAM键并选中。“安全”子菜单栏里有一项“权限”,打开它。在里面设置administrator和SYSTEM一样有完全控制权限。关闭regedt32再打开,就可以访问SAM键了。
第十六章——关于日志
简单说明:
日志是系统自动根据你个人的设置所记载的所定义配置中的活动情况及基本资料,这对一个管理员来说是很重要的,管理员可以根据日志发现系统的异常情况,并且及时做出处理.相反对于一个黑客来说,这也是至关重要的,因为xx作系统的许多服务都带日志。最重要和明显的就是IIS和事件日志。它们最有可能记录你的IP和行动。而且相对于其他的如ftp、计划任务、telnet的日志更为管理员重视。另外,如果你获得了图形界面的shell来用IE,还可能会留cookie,而这些东西对于你来说,都是至命的.消灭它没商量.^_^
相关工具:
cleanIISlog 清除web日志
http://www.netxeyes.org/cleaniislog.zip
Clean IIS Log(清除IIS日志)
http://arm.533.net/hack/cliislog.zip
Clear Event Log(清除事件日志)
http://arm.533.net/hack/clearel.zip
elsave.exe 清除事件日志
http://www.sandflee.net/down/show.asp?id=196
相关帖子:
NT/2000下删日志的方法
http://www.sixthroom.com/ailan/f … otID=383&ID=383
windows日志的保护与伪造
http://www.sixthroom.com/ailan/f … otID=382&ID=382
清除日志文件的深入探讨
http://www.sixthroom.com/ailan/f … otID=384&ID=384
第十七章——关于后门和木马
简单说明:
后门一般是指一个系统或是应用软件存在的一些设计缺陷,或是设计人员为了方便解决问题而特别留下的后门,
总之无论怎么样?如果后门被其他人知道,或是在发布软件之前没有删除后门,那么它就成了安全风险。还有一
种就是攻击者留下为了方便以后进入而留下的.木马其实也属于后门的一种.
相关工具:
wollf-v1.5 功能挺多的木马 http://www.isgrey.com/down/show.asp?id=144&down=1
WinShell v5.0 精巧的Telnet服务器 http://www.isgrey.com/down/show.asp?id=200&down=1
广外女生1.52C http://netsill.com/download/download.asp?Did=1815
冰 河YZKZERO最终变异版 http://netsill.com/download/download.asp?Did=1799
WinEggDropShell V1.32 http://netsill.com/download/download.asp?Did=2069
ASP Cmd(ASP木马,可远程执行命令)http://arm.533.net/control/aspcmd.zip
CGI BackDoor(CGI后门)http://arm.533.net/hack/cgibackdoor.zip
Root Kit(NT后门)http://arm.533.net/hack/rk.zip
网络神偷 V3.4 反向连接,上线通知 http://www.isgrey.com/down/show.asp?id=239&down=1
Sunx Backdoor(Unix内核后门)http://arm.533.net/hack/sunxkdoor.tar
 
 
 
 
第十八章——关于打补丁
简单说明:
如果你发现肉鸡有漏洞的话,一般可以用上面提到的漏洞搜索引擎找到相应的补丁下载URL。大的补丁比如sp2 就找微软要吧(特别推荐windows update,可以使用WEB方式的搜索功能,查看到你现在有哪些补丁没有下安装 ,以免因为系统漏洞给你或你的公司带来不必要的损失。在攻击别人之前自己的安全一定要做好,否则,呵呵 ,你就哭去吧)。
相关资料:
肉鸡补丁教程 http://www.sixthroom.com/ailan/f … otID=380&ID=380
相关工具:
WINXP-SP1补丁
http://www.05110.com/download/show.asp?id=156&down=1
win2000sp3中文版
http://www.cnns.net/msfix/w2ksp3_cn.exe
win2000sp3中文版
http://211.147.1.39/color/download.asp?id=450&downid=1
win2000sp3英文版
http://www.cnns.net/msfix/w2ksp3_en.exe
Windows2k安全补丁集SP1下载(简体中文)
http://download.microsoft.com/do … 5/CN/w2kSP2SRP1.exe
Windows2k安全补丁集SP1下载(英文)
http://download.microsoft.com/do … N-US/w2kSP2SRP1.exe
电脑之家各类补丁下载
http://download.pchome.net/system/patch/
CERNET网络应急响应组各类补丁下载 http://www.ccert.edu.cn/patch/index.php
黑客防线各系统补丁下载
http://hacker.com.cn/down/sort.asp?zhuid=28
第十九章——关于telnet
简单说明:
telnet是一种命令行方式的终端服务,其优势在于客户端和服务端都是系统自带的。它是除了木马外,获得cmd下shell的最好选择。使用该服务时,最常遇到的问题就是NTLM认证方式。当NTLM=2时,要求你必须使用你系统当前的帐户和密码登陆;当NTLM=0时直接要求你输入帐户及密码进行验证;NTLM=1则是前一种要求失败后再用 后一种。由于系统默认的NTLM为2,所以想用你得到的帐户登陆,要么在自己系统上也建立一个用户名密码都一样的帐户,要么想办法更改对方的NTLM。(TELNET我个人非常喜欢,原因很简单,他是系统本身自带的,100% 不会出现被查杀的情况)TELNET使用方法很简单直接在CMD下键入telnet remote-computer-name(or IP)既可。
相关工具:
telnethack 远程开启telnet服务 http://www.bluedon.com/download/down.asp?id=310&sort=6
Win Shell(最精巧的Telnet服务器软件)http://arm.533.net/hack/winshell.zip
iCmd(Telnet服务器,执行后自动23端口)
http://arm.533.net/hack/icmd.zip
Inet Spy(Telnet客户端)http://arm.533.net/hack/inetspy.zip
NT Shell(Telnet服务器(自带客户端),可互传文件,还可能获取Admin权限)
http://arm.533.net/hack/ntshell.zip
Ncx99(Telnet服务器,执行后自动99端口)
http://arm.533.net/hack/ncx99.zip
Putty(Telnet客户端,图形界面)
http://arm.533.net/hack/putty.zip
RTCS(灰色轨迹测试版)http://www.sandflee.net/down/show.asp?id=245&down=1
相关帖子:
最快速登录WIN2K TELNET 服务 http://www.sandflee.net/txt/list.asp?id=58
不需任何工具,远程屏蔽telnet服务的ntlm认证
http://www.sixthroom.com/ailan/f … otID=377&ID=377
基于Telnet协议的攻击
http://www.sixthroom.com/ailan/f … otID=376&ID=376
telnet 跳板攻击
http://www.sixthroom.com/ailan/f … otID=378&ID=378
防范针对telnet的攻击
http://www.sixthroom.com/ailan/f … otID=379&ID=379
第二十章——关于ftp入侵
简单说明:
FTP是英文File Transfer Protocol(文件传输协议)的缩写。顾名思义,FTP就是专门用来传输文件的协议,也就是说通过FTP我们可以在Internet网上的任意两台计算机间互传文件。
  一些人容易将FTP与Telnet混淆,而实际上Telnet是将用户的计算机当成远端计算机的一台终端,用户在完成远程登陆后,具有远端计算机上的本地用户一样的权限。而FTP没有给予用户这种地位,它只允许用户对远方 计算机上的文件进行有限的xx作,包括查看文件、交换文件以及改变文件目录等。
即使得到上传权限也无法直接执行程序,利用办法可以参考win98共享的入侵。一些较早版本的ftp服务软件,尤其是UNIX平台上的,有溢出或越权访问的漏洞,相关信息请查看后面关于漏洞的部分。
常用类软件:
华军软件 http://www.newhua.com/ (根据物理位置自行选择速度快的镜像)
中国下载 http://download.com.cn/ (使用查找功能可找到大部份软件)
东丽在线 http://www.tjdl.net/softdown/ (不错的软件下载站,类似华军)
世纪下载 http://www.21sx.com/ (也是一个不错的下载站)
安全类软件:
安全焦点 http://www.xfocus.net/tool.php
安全资讯 http://www.aurorasafe.com/list.asp
天天安全 http://www.ttian.net/download/list.php
网嗅下载 http://netsill.com/download/default.asp
灰色轨迹 http://www.sandflee.net/down/list.asp
鹰派下载 http://211.155.27.112/~technic/down/

创新的成功始于选题的成功

创新的成功始于选题的成功,但选题平庸、创新不足和重复性选题是当前科研选题中的突出问题。医学由于其学科的特殊性,科研选题不同于一般的科研选题。我们在实际科研管理工作中,发现许多科技人员选题问题依然比较突出,特别是在创新的把握上,如何引导显得尤其重要。
一、 关于科学研究的本质特征
科学研究是人类探索未知、创造、发展和应用知识的认识活动过程。联合国教科文组织用“R&D”(即“研究与发展”)来表示科学研究的概念。马克思认为:科学研究是精神的生产。美国科学家罗斯坦认为:科学研究是扩大或修改知识为目的的批判性的透彻的探索工作。日本内野晃认为:科学研究就是追求真理探索学问的行为。美国资源委员会则定义为:科学研究是科学领域中的探索和应用,包括对已经产生知识的整理统计图表及其数据的收集编辑和分析研究工作。我国国家教育部定义是:“科学研究是指为了增进知识包括关于人类文化和社会的知识以及利用这些知识去发明新的技术而进行的系统的创造性工作。”这些概念或定义的内涵和外延都非常丰富,都有合理性,但概括起来不外乎是创造知识和整理知识。
如果要给医学科研下一个定义的话,可以概括为,医学科学研究是探索人体生命本质和疾病相互转化的规律,寻求防病治病和恢复健康的方法的认识活动过程。因此,科学研究的本质特征是创造性与非重复性,并同时具有探索性、继承性和复杂性的特征,其表现形式为“信息”——知识产品。但创造性与非重复性是科学研究的最本质特征,这也是科研选题必须遵循的首要原则。
二、科研选题重要性的再认识
科学研究的程序主要包括科研选题、课题设计、实验观察或调查、实验结果及资料的加工整理、总结分析并提出研究结论,撰写研究报告或申请专利与推广应用等。简而言之,就是提出问题,验证假说,得出结论,或者说就是提出问题,解决问题。在这几个环节中,选题是科研过程的战略性步骤和起点,是科学研究的首要环节。科研选题是根据选题的原则并遵循选题的程序,确定研究的具体科学技术问题的过程。爱因斯坦与他的学生费尔得合著的《物理学的进化》一书指出:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅是一个数学上或实验上的技能而已。而提出新的问题,新的可能性,以新的角度去看旧的问题,却需要创造性的想象力,而且标志着科学的真正进步。”科学学家贝尔纳也曾指出:“课题的形成和选择,无论是作为外部的经济技术要求,抑或作为科学本身的要求,都是科研工作最复杂的一个阶段。一般说来,提出课题比解决课题更困难。”
这里他们都特别强调,“提出问题”和“选择问题”的重要性,可见“正确地提出问题等于解决了问题的一半”的说法是有一定道理的。因此,科研选题是科学研究过程中具有战略意义的首要问题和关键环节,是贯穿于全部科研工作的主题思想,是指导科学研究各项工作设计安排的主线。选题恰当与否,其意义在于科研选题关系到整个科研工作的成败与成果水平的高低,关系到国家目标能否得到体现,关系到科技人员的成长与成才,关系到科研管理活动的效能,包括人力、物力、财务的节约与浪费等。对选题而言,科研选题是对某一科学问题在理论上和实验技术方面的概括。它集中反映了选题者基本理论与专业知识的丰富程度,实验技术与方法的熟练程度,科学思辩能力的强弱程度,知识结构的合理程度与知识面的广度。因此,它体现了选题者的科学天才、智慧、经验和技巧。正如Oliver(1991)所说:“和其他事业一样,科学中的成就往往属于最懂得战略、战术的科学家,而不一定属于最有天才、最有技巧、最有知识或著作最丰富的科学家。”
作者认为,一个创新性强,科学意义和应用价值重大而可行的课题,可以概括我三句话,即目标要高,思路要新,方案可行。目标要高:“基础研究世界第一,应用研究效益第一。”坚决不重复前人已做过并得到肯定的工作,一般不重复近期文献报道的工作,必须做前人没有做过的工作,思路要新:要善于在错综复杂的矛盾或疾病现象中寻找新的切入点和突破口,科研思路独辟蹊径,耳目一新。方案可行:技术路线新颖、简洁;方法先进,或者说与科研目标相“匹配”;观察指标能充分说明研究结果及推论,即用最简洁的路线、最简单的方法、最少的指标完成研究课题,实现研究目标。
三、创新原则的把握及其相关问题
创新性是科学研究的灵魂。它体现科学研究的真正价值。一个课题如果没有创新,是没有任何意义的,也不能算作是真正意义的科学研究,只能是“学习”或重复前人的工作。创新可分为两大类:第一类是原始创新,原始创新的核心在于所在研究领域中基本概念上的建立或突破、新方法的建立或在新的领域内的拓展。基础研究的工作主要属于原始创新。如诺贝尔奖80%以上都属于原始创新。第二类是次级创新。次级创新主要表现在对现有概念、理论、方法等的补充和改良。应用基础研究和大部分应用研究多属于次级创新。***主席在1995年全国科技大会上的讲话中指出:“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。如果自主创新能力上不去,一味靠技术引进,就永远难以摆脱技术落后的局面。一个没有创新能力的民族,难以屹立在世界先进民族之林”。科学研究就是要求新、求异、求真,要有独到的见解。因此,创新是民族自立之本,是科学研究的第一要义、核心和标志。实际中如何把握创新是一个突出的难点。要真正做到创新,应解决好以下的几个认识上的问题:
1 处理好国家目标与创新的关系 所谓“国家目标”就是在我国现代化建设过程中,科技工作必须围绕国家经济建设和社会发展中的重大关键性科技问题进行布置和规划。概括地讲,国家目标就是发展经济,提高国家的整体科技水平,增强综合国力。具体体现在国家的科技发展规划、计划或项目招标指南中,如973规划、863计划、国家自然科学基金项目招标指南等。选题要把注重在学科领域内创新和体现国家经济、社会与科技发展目标有机地结合起来,因为选题的准确与否,体现了对科学发展趋势的了解与预测,体现了对市场需求的预测,体现了对国家经济、社会与科技发展目标的理解程度。只有把两者结合起来,才能真正说是选准了课题,瞄准了目标,同时又有创新。
2 处理好前沿与自身特色的关系 科学研究的前沿是指已知与未知的界面。分为热前沿和冷前沿。热前沿即当前有多数人围绕某一问题进行研究。常常是在某一学科或领域取得突破性进展,或者出现了新的技术手段有利于进一步深入研究时形成的。如从基因水平揭示疾病的发生机制,探求新的防治方法及基本病理过程,是国际也是我国基础医学和临床医学的热前沿。冷前沿当前很少有人研究,但却是蕴藏着重大意义的问题,常常是由于人们难于着手或未予以重视的问题。而特色是科学家们长期围绕一个主题的系列研究并通过积累,形成的传统性研究方向与专长。前沿要探索,特色不能丢。已经形成的传统特色研究方向可从前沿借用新的理论、手段和方法来解决当前课题面临的问题,进一步形成自己的优势和特色避免一窝蜂上前沿。而对于还没有形成自己特色,的年青科技工作者,在把握学科发展趋势的同时,从学科发展的前沿去选题,走前沿和尖端要快,从而尽快把研究工作推向前沿。
3 处理好现有基础与创新的关系 现有工作的积累是创新的前提和基础,单从书本、文献上找热门课题,赶时髦是做不出开拓性工作的。选题要站在世界科技发展的潮流之中,要有专业的敏感性。有人认为,最好的选题不是现在的热点,而是在两三年后凸现出来的东西,这样的人才才有可能领导一个方面的开拓性工作。
4 在学科的融合、交叉和综合中体现创新 充分注意学科交叉和跨学科研究选题。学科交叉根据其交叉程度的不同,大体有三种形式。一是方法上的交叉,即借用其它学科的研究方法和技术手段来解决本学科的问题,得出单一学科无法得到的指标、数据和结论;二是不同学科、不同专业的研究人员互相结合,针对同一问题,从不同侧面去探求问题的本质和规律,这需要不同专业的研究人员进行广泛合作,共同对研究内容、研究方法和研究结果加以综合分析,以求获得整体性、综合性的结论;三是学术思想上的交叉、互融,用单一学科的理论基础和技术手段不能取得理论性突破,需要其它学科新理论的参与,共同设计研究方案的解决途径,达到学术理论之间的碰撞、互补和衔接,这也是最深层次和最应鼓励与支持的一种学科交叉。应提倡从多学科的融合中提出新问题,选出新方向,应改变那种只在本学科范围内选题的习惯。但在实际工作中,很多所谓交叉项目,往往只是一些方法上的交叉应用,真正从学术思路上交叉的项目少。严格意义上的交叉,必须从学术思想、预期目标、技术方法等方面实现结合,离开任何一个学科都不能完成既定目标。
5 与创新密切相关的科学观、系统观问题
(1)注意医学科学研究的特点即系统性与复杂性 医学面对的人是一个有机整体,是一个包括多种物质运动形式、多层次、多因素相互作用的复杂的开放系统。系统性和复杂性是人体、疾病和医学科研的基本特征。在选题、设计和结果验证等科研过程中要引起高度重视。否则,不但课题中不了标,就是中标了,其实验结果也难以让人信服。这也是医学研究的难点。
(2)医学科学研究必须十分关注生物学(生命科学)的发展动态 从总体上讲,医学科学的发展是随着生命科学的发展而发展的,因为生物学研究的是正常生理状态下生命发生、发育与调控的规律,而医学科学研究的是病理状态下疾病发生、发展与转归的规律。许多学科联系紧密,密切相关。如解剖学—病理解剖学,生理学—病理生理学,细胞生物学—细胞病理学,分子生物学—分子病理学,基因组学$C基因病理学。临床医学研究又必须十分关注基础医学的发展。如免疫学—临床免疫学,药理学—临床药理学,神经生物学—神经病学,微生物学、寄生虫学—病原生物学,生物化学—临床生物化学等等。随着人类基因组计划的完成,医学科学研究可充分吸收其研究成果,来阐明疾病的发生机理,进而建立新的临床诊断方法和治疗方法。
(3)树立“大科学观念” 科学发展至今天,人类已进入大科学时代。当代生命科学由于受到人类基因组计划(HGP)的冲击,正在发生着一场影响广泛而深刻的革命。随着HGP的完成,医学也将进入“分子医学”、“基因医学”时代,同时一些新的研究领域正在不断涌现,如生物芯片、基因信息学、蛋白质组学等。因此,在科研选题中,也应树立现代科学的“大科学观念”,树立“基因观念”、“基因病理学观念”,而相应的科研思维模式、方法和手段都应有所转变。对当代医学科学的发展,不仅要熟悉自己所在的学科领域(局部),还要了解整个医学的发展态势(全貌),既要知道自己所处的位置,又要知道同行的领域和动向。科研选题在科研活动中具有重要地位,一定意义上讲科研选题的成功,科研就成功了一半,认真作好科研选题,突出注重选题的创新性原则,是对每个科技工作者的基本要求,应引起科研管理部门的高度重视。

平时图片保存应该注意的几点

适用范围:由于国内杂志对图片的要求低,本文主要针对影响因子较高(IF>3)的国外杂志,为一般原则(General guidelines)。

内容

【图片保存的格式】

常见的图片格式有:TIFF、JPG、PCD、PSD、PCX、EPS、GIF、BMP等,其中TIFF彩色、黑白位图,EPS矢量图为印刷前输出软件常用图形格式,图片尽量采用这三种格式。

首先要明确投稿两个阶段对图片要求的不同:
(1)文章被接收后杂志对图片的要求(Manuscripts Accepted for Publication):主流要求图片格式为EPS和TIFF等(Figures only in TIFF or EPS formats)。
(2)第1次投稿的时候对图片的要求(即:审稿阶段)(Initial Submission of Manuscripts for Review)。
在投稿的时候,杂志社将你的文章送审给审稿人的时候一般是PDF格式。如何生成PDF格式,有两种情况,一是杂志社要求作者投稿的时候就上传PDF文件格式,那么作者就要自己生成PDF文档。另一种情况是杂志编辑部帮你生成PDF,通常又有两种情况,一是上传图表和正文在一起的WORD文档。二是正文和图片分开上传,且图片要单个上传(不同的杂志要求不一样,比如个别杂志JPG可以接受)。总之这个阶段的图片要求很灵活。

建议:因此个人认为大家平时最好将图片扫描保存为TIFF格式。因为两点:(1)TIFF较JPG包含的图片信息大,便于后期图片各种编辑。(2)尽管有的杂志在审稿阶段能接收JPG格式,但是即使是这样的杂志,在文章被接收后,又要你上传TIFF或EPS等格式。(3)TIFF转化为JPG容易,JPG转化为TIFF图象信息损失大。

【图片保存的分辨率】

杂志对不同的图的要求是不一样的。
首先要清楚下列3种图概念:monochrome artwork和halftone artwork以及combination artwork(请参考:http://www.dxy.cn/bbs/post/view?bid=45&id=4387892&sty=1&tpg=13&age=0 )

杂志对monochrome artwork分辨率要求最高,一般1200dpi(1200 DPI/PPI for monochrome),halftone artwork分辨率要求最低,一般300dpi(300 DPI/PPI for halftones),combination artwork(600 DPI/PPI for combination halftones)分辨率要求中间,一般600dpi。

建议:平时一般分辨率保存为600 dpi。因为:某图片分辩率为600*600dpi/像素/英寸,那么,它现在的尺寸就可放大至一倍以上使用也没有问题。如果分辨率为300*300dpi,那么它就只能缩小或是原大,不能再将其放大。因此600 dpi是比较折中的,基本满足杂志对图片的要求,在TIFF格式的时候储存的图片大小也能接受。另外要注意采用的图片不能以显示为准,不要因为图片经过acdsee或是其它软件看到挺精美,放大后也很精美就认为可以作为印刷用,一定要经过photoshop打开,用图像大小一项来确认其真正分辩率。

【图片保存的模式】(仅对彩图而言)

首先我们要知道下面两种常见模式:
(1)RGB模式:又称RGB色空间。它是一种色光表色模式,它广泛用于我们的生活中,如电视机、计算机显示屏、幻灯片等都是利用光来呈色。印刷出版中常需扫描图像,扫描仪在扫描时首先提取的就是原稿图像上的RGB色光信息。RGB模式是一种加色法模式,通过R、G、B的辐射量,可描述出任一颜色。计算机定义颜色时R、G、B三种成分的取值范围是0-255,0表示没有刺激量,255表示刺激量达最大值。R、G、B均为255时就合成了白光,R、G、B均为0时就形成了黑色。在显示屏上显示颜色定义时,往往采用这种模式。图像如用于电视、幻灯片、网络、多媒体,一般使用RGB模式。
(2)CMYK模式:又称CMYK色空间。对从事印刷业的人员来说,CMYK是最熟悉不过了。这种模式是一种减色模式,遵循减色法混和规律。现代胶印采用的都是柯式印刷(四色套印),也就是将彩色图片分成四色:青(C)、品(M)、黄(Y)、黑(B四色网点菲林,再晒成PS版,经过胶印机四次印刷,出来后就是彩色的印刷成品。CMYK模式实质指的是再现颜色时印刷的C、M、Y、K网点大小,因此C、M、Y、K的数值范围为0%-100%。CO%MO%YO%KO%表示白色,C100%M100%Y100%K100%表示黑色。

其次我们要明确印刷用图片不同于平常计算机显示用图片,图片必须为CMYK模式,而不能采用RGB模示或是其它模式。但是,是否意味着平时图片保存的时候就将图片保存为CMYK模式了。答案是否定的。个人认为最好要保存为RGB模式。

建议:平时图片保存为RGB模式。因为:(1)尽管目前有95%以上的杂志在Manuscripts Accepted for Publication阶段要求作者提供CMYK模式,但是我们必须看到越来越多的杂志改变以往的要求,要求作者提供RGB模式(可能是一种趋势)。例如Journal of Biological Chemistry杂志在其最新的投稿须知中明确了不在接收CMYK模式,只接收RGB模式(The JBC is now in an RGB (Red, Green, Blue) workflow for color figures. Prior to June 1, 2005, authors were required to submit figures in CMYK (Cyan, Magenta, Yellow, blacK) color mode, as this is the native color mode for the printing process and thus optimizes color for press. As of June 1 2005, all color figures should be submitted in RGB format. Images supplied by authors in RGB color will retain the brilliant reds, greens, and blues for online publication, but may experience a color shift in printed form. To learn more, please see http://art.cadmus.com/da/jbc/index.jsp) 主要原因是因为现在很多杂志都有在线杂志,由于RGB图比CMYK图显示更好,色彩更漂亮,适合网络上用(online publication)。而且由RGB转变为CMYK模式容易(适合印刷),但是由CMYK模式转变为RGB模式,图象的表现力下降。(2)平时总有机会参加学术交流,因此要制作幻灯片,选择RGB比CMYK更能体现图片包含的信息。

[color=red]【图片保存的大小】

首先要明白通栏和半栏的概念。一般杂志为A4纸大小左右,通栏为15厘米宽,半栏为7.5厘米宽(不同杂志可能稍有不同)。因此在保存图片的时候自己就要判断该图片是准备为通栏还是半栏发表。当然我们大部分图片是半栏(实际上杂志社也鼓励为半栏)发表,因此图片大小就在宽度设定的时候设置为7.5厘米。如果你保存的分辨率越高,图片大小还可以更小。例如图片为半栏,分辨率为600dpi,那么宽度就可以设为4厘米。因为某图片分辩率为600dpi,它现在的尺寸就可放大至一倍以上使用也没有问题。


【小结】

图片保存的时候最好按照高标准,宽尺度的要求进行(当然也不是越大越好。越高越好)。因为图片从大往小改容易,从小往大改难。例如TIFF变为JPG容易,JPG变为TIFF难;600dpi变为300dpi容易,300dpi变为600dpi难;RGB变为CMYK容易,CMYK变为RGB难。这里的难和易是对图片质量来说的,而不是指操作上。当然如果你认为必要就可以高低两种模式都报存,但是绝对不能仅仅保存低模式,比如图片为JPG,CMYK,300dpi(因为这样灵活性差,不适合杂志的普遍要求)。

励志

一、“要创新,就不要为功利所动,就不要浮躁”    
“目前的学术界,科研界被一种浮躁的氛围包围着。大家忙着写论文、评职称,忙着上SCI、EI检索,但大家的治学态度却有待商榷。”本科生写毕业论文,几个试验,几组数据,就拿过来评审,这些都是浮躁的表现,搞创新就必须不为功利所动。他说自己在日本学习期间,潜心研究材料制备工艺,几年间做了600个试验。“大家不要被一些宣传所迷惑,认为创新就是一个点子,一个好的想法,其实创新更是一个实践的过程,必须有过人的技能、过人的功夫,才能把别人做不了的事做好,才能将你的想法转化为成果,但这样的基础不是靠写论文就能获得的,同样不是查资料所能获得的。”
二、 “习惯为创新之母,创新得益于好的习惯”
“创新其实是来源于生活的。一方面,创新的点子、想法、解决问题的突破口都有可能来源于对生活的认真观察分析。这样的例子不胜枚举,历史上很多科学发现、创造发明都来源于生活,来源于对细小事物的‘斤斤计较’。要学会专注凝思,摆脱外界的干扰,这样能将事物的本质‘分离’出来。”
教授说,他的许多想法都是在深夜两三点钟从半睡半醒状态下想出来的,因为这个时间最安静,大脑可以排除一切干扰。“另一方面,创新离不开好的生活习惯。没有寻根问底的习惯,就不会找到事物的本质;没有独立思考的习惯,就会在探索中失去方向;没有精益求精的习惯,就不会做出尽善尽美的设计;没有为他人着想的习惯,就不能与他人精诚合作,没有合作,哪里有创新?这些习惯无时无刻不在日常生活中体现,也无时无刻不左右着你的处世为人。同样,他们也左右着你在创新之路上是否能走得更远。”武教授这样告诫同学们。
习惯在于培养,只要从身边小事情做起,持之以恒,久而久之,便养成了习惯。时间再长,习惯成为气质,气质成为修养。将好习惯积累下来,就接近了成功……“但只有好习惯就能创新吗?一个老农民什么好习惯都具备,那他就一定能创新吗?”教授笑着问,“我们还要有能力!”
三、“拥有两只手,人才能创新”
教授认为,如果习惯是人的左手,那么能力就是人的右手,拥有两只手,人才能创新。大学生应该掌握4种能力:首先,要有获取新知的能力;其次,要有工程实践的能力;再次,要有发现问题与分析问题的能力;最后,要有交流沟通与合作的能力。这不仅仅是创新要具备的能力,而且是大学生一生所需要的,也是大学教育的目的所在。他们之间是息息相关的:获取新知与工程实践是基础;发现与分析问题是关键;与他人交流合作沟通是手段。只有将这4种能力协调的运用起来,才能抓住机会,走向成功。
思为行之先,教授希望我们能够拥有深邃的眼睛,不要盲从,不要追风。那就让我们去做一个拥有智慧的创造者,做一个能为国家基业做出贡献的实践者

警语

许多研究生在刚刚开始做实验的时候,每天在实验台旁干到深夜,非常辛苦,以为这就是科研了,几个月过去,还在原地踏步.习惯于人云亦云,习惯于奉命行事,习惯于忙忙碌碌,这就不是什么研究生,只不过是一个廉价而又勤奋的技术员罢了.我的经验是:要多看书,一半时间做实验,一半时间看文献。千万不能把时间全部消耗在实验台上.看文献、看书、看别人的操作、听别人的经验、研究别人的思路,边做边思考.要学会比较,不要盲从,要在试验室的组会上提出有深度的问题,和有见地的发言.尽量避免犯那些前人犯过的低级错误.

讨人喜欢的26个原则

      1.长相不令人讨厌,如果长得不好,就让自己有才气;如果才气也没有,那就总是微笑。
  
  2.气质是关键。如果时尚学不好,宁愿纯朴。
  
  3.与人握手时,可多握一会儿。真诚是宝。
  
  4.不必什么都用“我”做主语。
  
  5.不要向朋友借钱。
  
  6.不要“逼”客人看你的家庭相册。
  
  7.与人打“的”时,请抢先坐在司机旁。
  
  8.坚持在背后说别人好话,别担心这好话传不到当事人耳朵里。
  
  9.有人在你面前说某人坏话时,你只微笑。
  
  10.自己开小车,不要特地停下来和一个骑自行车的同事打招呼。人家会以为你在炫耀。
  
  11.同事生病时,去探望他。很自然地坐在他病床上,回家再认真洗手。
  
  12.不要把过去的事全让人知道。
  
  13.尊重不喜欢你的人。
  
  14.对事不对人;或对事无情,对人要有情;或做人第一,做事其次。
  
  15.自我批评总能让人相信,自我表扬则不然。
  
  16.没有什么东西比围观者们更能提高你的保龄球的成绩了。所以,平常不要吝惜你的喝彩声。
  
  17.不要把别人的好,视为理所当然。要知道感恩。
  
  18.榕树上的“八哥”在讲,只讲不听,结果乱成一团。学会聆听。
  
  19.尊重传达室里的师傅及搞卫生的阿姨。
  
  20.说话的时候记得常用“我们”开头。
  
  21.为每一位上台唱歌的人鼓掌。
  
  22.有时要明知故问:你的钻戒很贵吧!有时,即使想问也不能问,比如:你多大了?
  
  23.话多必失,人多的场合少说话。
  
  24.把未出口的“不”改成:“这需要时间”、“我尽力”、“我不确定”、“当我决定后,会给你打电话”……
  
  25.不要期望所有人都喜欢你,那是不可能的,让大多数人喜欢就是成功的表现。
  
  26.当然,自己要喜欢自己。

生活中的最高境界[全集]

  读书的最高境界-- 

上课喝饮料的最高境界-- 

时尚拖鞋的最高境界--

超载的最高境界-- 

改车的最高境界-- 

平衡的最高境界-- 

天线的最高境界--

烟民的最高境界--

邮车的最高境界—— 

瞌睡的最高境界 

以小欺大的最高境界 


野炊的最高境界

骑车的最高境界 

整容的最高境界

新郎最悲哀的境界 

枪的最高境界

理发的最高境界--

睡觉的最高境界

抽烟的最高境界

削铅笔的最高境界

开车的最高境界

买彩票的最高境界

木工的最高境界

乘电梯的最高境界

如歌的行板

纯正的新疆小吃

新疆是个好地方。没来过的朋友,看了这个以后,你想来吗?
羊肉串,不用说都知道。
 
 
拉条子

  拉条子,一种不用擀、压的方法而直接用手拉制成的面制品。制作拉条子要把握两个关键,一是和面用水中的盐要适量。盐少了容易断,多了拉不开。二是面要醒好,一般以柔软有筋为好,技术高超的 厨师,一把面可以拉十几公斤。总长达数公里。拉条子在吐鲁番大大小小的餐厅饭馆都可以吃到,通常人们吃的炒面、拌面就是拉条子加工后做成的。


烤馕是吐鲁番维吾尔族最主要的面食品。“可以一日无菜,

但决不可以一日无馕。”


薄皮羊肉包子,不多说了,香!


烤包子

  烤包子维吾尔语称“沙木萨”。烤包子是在馕坑里烤的。用未经发酵的面做皮子,皮子要擀得很薄,做成方形包子。馅用羊肉丁、羊尾油丁、洋葱、孜然粉、胡椒粉和盐搅拌而成。


烤全羊

  烤全羊在新疆与北京烤鸭媲美的名贵菜肴就是烤全羊。新疆烤全羊,选料考究,制法特殊,在国内外享有盛誉,是当地高级宴席中不可缺少的菜肴。


大盘鸡!没来新疆,你永远不会知道大盘鸡的真正味道!


新疆酸奶。酸在口,甜在心。

各省市驻京办事处的特色小吃

1.新疆人民政府驻京办事处 海淀区三里河路37号
烤羊肉、烤馕、抓饭

2.西藏自治区人民政府驻北京办事处 西城区鼓楼西大街149号
正宗藏族吹肺、吹肝,藏族酸奶, 松子鱼, 羊肉炒面片, 酥油糌粑. …

3.安徽省人民政府驻京办事处 朝阳区惠新西街1号
腊八粥、大救驾、徽州饼、豆皮饭、,“五元神仙鸡”、马蹄鳖、怀胎鱼、油爆虾、安庆素火腿、素烤鸭 —–

4.上海市人民政府驻北京办事处 西城区北长街前宅胡同7号
蟹壳黄、南翔小笼馒头、小绍兴鸡粥、油爆虾。名菜太多,去看菜谱您就知道点什么了

5.天津市人民政府驻京办事处 和平里西街小黄庄路1号
嗄巴菜、狗不理包子、耳朵眼炸糕、贴饽饽熬小鱼、棒槌果子、桂发祥大麻花、五香驴肉。

6.河北省人民政府驻北京办事处 东城区黄化门街锥把胡同甲1号
金毛狮子鱼、驴肉火烧、兔架

7.山西省人民政府驻京办事处 西城区西板桥景山西街16号
栲栳、刀削面、揪片、“太原焖羊肉”、“香酥鸭”、红白过油肉,喜爱面食的朋友有福了

8.内蒙驻人民政府京办事处 崇内大街47号
烤羊腿、烤猪方、奶皮子刀切酥

9.辽宁省人民政府驻京办事处 东单麻线胡同15号
清蒸加吉鱼、红烤全虾、五彩雪花扇贝、小鸡炖蘑菇、家常熬鱼

10.湖南省人民政府驻北京办事处 海淀区北太平庄七省驻京办大院
新饭、脑髓卷、米粉、八宝龟羊汤、火宫殿臭豆腐、“玉带桂鱼卷”、“火腿柴把鸡”、“酸辣笔筒鱿鱼”、“天鹅抱蛋”、“冬笋炒腊狗肉”

11.吉林省人民政府驻京办事处 北太平庄七省驻京办大院
“酸菜白肉血肠”、“延边朝鲜族冷面、清蒸松花江白鱼、人参汽锅鸡(这个狂贵)

12.山东驻京办事处 北太平庄七省驻京办大院
锅塌菠菜、金牌化皮乳猪、山东煎饼、九转大肠、红烧海螺、 棒棒鸡好多好多

13.浙江驻京办事处 北太平庄七省大院
酥油饼、重阳栗糕、鲜肉棕子、虾爆鳝面、紫米八宝饭、“西湖醋鱼”、“龙井
虾仁”、“叫化童鸡”、“西湖莼菜汤”

14.江西驻京办事处 北太平庄七省大院
豆腐包鳅鱼、小乔炖白鸭(和美女连在一起的名菜哟) 、鄱阳湖狮子头、风味烤卤

15.河南驻京办事处 朝阳区潘家园华威里28号
必点小吃:枣锅盔、白糖焦饼、鸡蛋布袋、 血茶、鸡丝卷、“铁锅蛋”、“糖醋
瓦块鱼焙面”、“鹿邑试量狗肉”、

16.陕西省政府驻北京办事处 朝阳区北三环东路17号
歧山面、商州糍粑、荞麦??、牛羊肉泡馍, 灌汤包子 黄桂柿子饼,波丝烤羊腿,
臊子面. 泡泡油糕,粉蒸羊肉, 凉拌腰丝

17.四川省人民政府驻京办事处 建内大街贡院头条5号
蛋烘糕、龙抄手、玻璃烧麦、担担面、鸡丝凉面、赖汤圆、宜宾燃面、夫妻肺
片、灯影牛肉、小笼粉蒸牛肉、樟茶鸭、回锅肉、麻婆豆腐都是绝对正点的好味,和街上
的可不一样哟

18.江苏省人民政府驻京办事处 安外大街甘水桥江苏饭店
葱油火烧、汤包、三丁包子、蟹黄烧麦、蟹黄狮子头、冰糖炖蹄、镇江肴肉、软
兜长鱼、生炒蝴蝶片、大烧马?桥、菊花青鱼、金陵盐水鸭、叉烤鸭

19.宁夏人民政府驻京办事处 安定门内大街分司厅胡同15号
夹饭、丁香肘子、金钱发菜

20.贵州省人民政府驻北京办事处 北三环东路和平西桥樱花街18楼北京贵州大厦
据朋友说,里面的肠旺面、花江狗肉、酸汤鱼、鼎罐鸡、恋爱豆腐果、丝娃娃、
夜郎面 鱼、荷叶糍粑绝对值得一吃。超辣,怕长豆豆的朋友不去为妙

21.福建省人民政府驻景焓麓?体育馆法华南里18楼
蛎饼、手抓面、五香捆蹄、鼎边糊

22.广东人民政府驻京办事处 西三环岭南路36号
鸡仔饼、皮蛋酥、冰肉千层酥、广东月饼、酥皮莲蓉包、刺猥包子、粉果、薄皮,鲜虾饺及第粥、玉兔饺、干蒸蟹黄烧麦—我的口水都流出来了:)

23.广西人民政府驻京办事处 东三环中路双花园南里
大肉棕、桂林马肉米粉、炒粉虫

24.云南人民政府驻京办事处 北三环东路17号
卤牛肉、烧饵块、过桥米线、“炸烊葱”,“酿百合”,“油炸仙人掌花”

25.潮州市驻京办 东外察慈小区8号楼
那里的 潮州小点和名菜是最正宗的。烧雁鹅、豆酱鸡、护国菜、什锦乌石参、葱
姜炒蟹、干炸虾枣。还有,老婆饼太好吃了!!!

26.海南人民政府驻京办事处 西内大街172号
名菜有文昌鸡、加积鸭、东山羊、和乐蟹

27.德州市驻京办 海淀区北蜂窝甲2号
追求正宗扒鸡的朋友可以去那里看看

蒲慕明:研究生要学做有品德的科学家

研究生时期必须学习做一个有品德的科学家。无论是在学术界,还是在社会上,有品德的科学家才能得到多数人的尊重,他的工作才能使人信服。有品德的科学家是严谨的,是讲公德的,是有诚信的,是尊重事实并捍卫真理的。在报告你的科研结果时,必须遵守严谨的标准,不要一有结果——即使数据靠不住,自己都不能信服——就出文章。否则,文章出了,不能继续下去,别人也不能重复。将来大家知道这个工作是错的,那你的科学生涯就有了污点。假如你的发现吸引了大家的注意,后来又发现是完全错误的,这个污点可能严重影响你的前途。千万不要因为眼前要出文章,就发表不可靠的结果,将来后患无穷。培养严谨的态度要从小事做起,实验时数据的收集、分析、记录都要严谨地、仔细地处理。到公用实验室使用仪器,应该怎样操作就怎样操作,该签名时就签名,要守规矩。想省事、走小路和占小便宜都反映了不严谨的态度,这些态度积累在一起就会成为习惯,到最后就会犯大错。

  科学家的品德也反映在与人合作的态度上。跟人家交流合作,必须公平互惠。合作是一名科学家要学会的最重要的事情之一。假如不会合作,你在未来的科学生涯里就有极大的局限。学会做一名好的合作者,是你成功的重要因素。怎样学习合作?从做学生开始就要学习,因为做学生时的合作是最多的,老师交给你的工作是整个项目的一部分,你要跟别人合作。很多年轻人,尤其到国外后,普遍有一种想法:要在这个社会生存,就要竞争,要竞争就要厉害,要抢,不能退让。中国人过去都是软弱、被欺负,所以现在要厉害、要抢,有一个便宜就占一个便宜,有好处不拿白不拿。我认为这是一种非常短视的、浅薄的态度。你总是占便宜,人家就不跟你合作。

  最常见的问题就是谁做文章的第一作者。都认为自己贡献最大,自己应该是第一作者。但是,要量化贡献并使每一位当事者都认为完全公平是非常困难的,因为每个人的算法都不一样。很多情况下,是导师做主。导师要公平,做合适的评估。我们不要因为不是第一作者就认为太不公平。这次感觉吃亏了,你可以采用一种和气的态度接受这个事实,下一次可能会有好的安排。即使你的合作者这次占了便宜,下一次他也可能认为应该让你多得一点。这就是有来有往,不要以为什么事情都是你第一。我自己的经历就是这样,与人家合作时,我不争文章排名,一般我都是很好商量。多年来,我都有很好的合作者,我自己也有很多收获,因为这些合作使我自己得到了学习的机会,也扩展了自己的研究领域,总的来说,这对科学是有好处的。其实学生也一样,在一项工作中谁的贡献怎样,大家心中会有正确的估量。所以,大家合作时不要斤斤计较,要以做科学为主,不要因为计较眼前的利益而把自己的名声搞坏。作为导师,文章署名或排名应尽可能公正合理。国内有些导师给学生排名时不是依据贡献来排名,甚至对没有参与工作的学生或其他有关系的人也会给好处,把他的名字放在文章上。还有的导师跟别人合作时一定要坚持自己在排名上占绝对的好处,到最后常常导致不愉快的事件发生。

  另一个与科学家品德有关的问题,就是国内科技界的浮夸风。用文字或在公开场合描述自己的成就时,也许要做到完全客观是比较难。但现在国内许多对个人或单位研究工作的意义或取得的成就的描述,常常夸大得不成比例。有人辩解说,“这是公关,为了经费和名声,这是必须做的”,“每个人都这样做,国外的科学家也是这样公关的”。我不赞同这种态度,如果过分夸大事实,不诚实的、欺骗的行为是所谓的国际趋势,我们也不应该遵循这样的趋势。我反对科学家像商人一样用尽一切办法,包括欺骗,去“销售”他自己和单位。我坚信,一位有品德的科学家应该是诚实的,即便是面向“无知”大众或那些不懂得他的研究领域的领导也必须是诚实的。当一名科学家成为科学管理者时,更有义务坚守科学家的行为准则:讲实话,不浮夸。中国科技界盛行浮夸,包括申请经费时的浮夸风,主要原因还是科学家不能坚守基本的品德。这种浮夸风已经成了中国科学发展、中国科学得到国际科学界尊重的主要障碍。我希望我们的研究生、下一代的科学家能纠正这种不良倾向,要对自己、对科学、对社会坚守诚信的品德。

  胡适的两句话可以作为大家的座右铭。第一句是“大胆假设,小心求证”;第二句是“有几分证据说几分话”。胡适当时讲的是考证工作,但同样也非常适合做科学。如果能严守这两句座右铭,你将成为一名好的科学家。

多一个吃蔬菜的理由

蔬菜是健康饮食的重要组成部分,可是你是否知道蔬菜可以预防癌症呢?乔治城大学(Georgetown University)医学中心的研究人员发现,十字花科蔬菜如花椰菜含有的一种称为Indole-3-carbinol(I3C) 的物质,以及豆制品中含有的染料木黄酮(Genistein, 异黄酮的一种, 又名金雀异黄酮或染料木素),可以刺激人体细胞生产出作用于DNA修补的蛋白质,从而更有效地避免基因突变以及癌症的发生。
癌症的发展可以看作是一个进化的过程。正常的细胞在经历基因突变后可能成为具有更琼森长能力的细胞,而这样的细胞就有机会累积更多的突变。在这样的恶性循环下,一些正常的细胞就这样一步步进化成生长不受约束的癌细胞。因此,减少基因的突变是从根本降低癌症发生机率的方法之一。人体的细胞其实早已内置了强大的保护系统来检测并且修复DNA遭受的损伤,从而避免基因的突变。可是人体细胞内的DNA时时刻刻都在面临着内外各式各样的威胁,我们的保护系统偶尔也会力不从心。如果我们可以适当地加强这个系统的能力,基因突变也就会间接地减少。BRCA1和BRCA2都是这个系统中的重要成员。这两个基因得名于它们在乳腺癌(BReast CAncer)中的作用。事实上,在很多乳腺癌、前列腺癌以及卵巢癌病例中,两者都发生了突变。
乔治城大学Rosen博士领导的研究小组之前已经发现单单I3C就可以提高乳腺癌细胞的BRCA1含量。而此次当该小组在把乳腺癌以及前列腺癌的细胞置于一定浓度的I3C和染料木黄酮之中,发现BRCA1和BRCA2的蛋白质含量比预期有了显著增加,这也意味着细胞修复DNA的能力得到了增强。这项成果发表于《英国癌症期刊》(British Journal of Cancer),其重要性在于,这是迄今最早的从分子细胞角度来解释某些蔬菜在预防癌症中所起作用的实验之一。
原始论文: S Fan, Q Meng, K Auborn, T Carter and EM Rosen. (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. British Journal of Cancer 94: 407-426.

Avian Influenza and Pandemics — Research Needs and Opportunities

As the year 2004 progressed, so did conditions favoring the start of an influenza pandemic. The first warning came in January, when Thailand and Vietnam reported fatal human cases of avian influenza caused by the H5N1 strain of influenza A virus. That strain was already notorious for its pandemic potential, revealed during an outbreak in Hong Kong in 1997 and later in a smaller number of human cases in 2003.
With the H5N1 strain now endemic in birds in large parts of Asia, the probability that this potential for a pandemic will be realized has increased. Recent laboratory and epidemiologic studies have yielded disturbing evidence that the H5N1 virus has become progressively more pathogenic in poultry, has increased environmental resistance, and is expanding its mammalian host range. In 2004, H5N1 caused 44 human cases of avian influenza, of which 32 were fatal. Two features are striking: the overwhelming concentration in previously healthy children and young adults and the very high mortality rate. The risk that more people will be affected is now firmly entrenched in rural areas in Asia, where most households maintain free-ranging poultry flocks and depend on them for income and food. Outbreaks under such conditions may escape detection, are difficult to control, and increase the opportunity for human exposure, especially in situations where children play near poultry and families slaughter birds for food.
Since the beginning of this year, all prerequisites for the start of a pandemic have been met save one — namely, genetic changes in this virus that would allow it to achieve efficient human-to-human transmission. Will the recent changes in the ecology of the disease and the behavior of the virus lead to this last step, or will they prove irrelevant? No one can say with certainty. Nonetheless, the warning signal has been clearer than ever since 1968, when the last pandemic occurred, and thus there is an unprecedented opportunity to intensify worldwide preparedness. Fortunately, scientific understanding of influenza, including the origins of pandemics, has progressed enormously since 1933, when an infected ferret sneezed in the face of a scientist and a virus was eventually identified as the cause of the scientist’s subsequent influenza-like illness. Recent studies of the H5N1 strain of avian influenza A virus, conducted by laboratories in the World Health Organization Global Influenza Surveillance Network, have shown the power of molecular epidemiology to contribute to the monitoring of an outbreak and its evolving threat. But substantial gaps in knowledge remain, making the ability of science to guide policy imperfect at a critical time.
Information is urgently needed, in the short term, in five research areas: case management and hospital infection control; clinical research on the immunogenicity of vaccines for pandemic influenza; early interventions to slow down the spread of emerging pandemic viruses; the role of various animal and bird species in the epidemiology of influenzaviruses with pandemic potential; and risk assessment. In the longer term, the development of vaccines capable of conferring enduring protection against all influenzavirus subtypes and thus of reducing death and disease from seasonal and pandemic influenza would be a breakthrough. Furthermore, studies of the ecology and molecular biology of influenzaviruses could uncover the genetic foundation of influenzaviruses’ host specificity and pathogenicity.
The most pressing question is the following: Why has H5N1 not reassorted with a human influenzavirus? It certainly has had ample opportunity to do so. The world has never before seen outbreaks of avian influenza on the scale of those that have swept through large parts of Asia, including densely populated China. From January through March 2004, more than 120 million poultry birds died or were destroyed as part of massive control efforts. Unprotected workers had intense exposures, as did health care workers. Virologic surveillance has demonstrated the concurrent circulation of human viruses. Hence, one conclusion is tempting: if H5N1 could reassort, it should have done so by now. The explanation may lie in sheer statistical luck. It could also be that reassortment has occurred but has resulted in viruses that are not viable, not pathogenic, or not more easily transmitted among humans than H5N1 currently is. If so, this news would be very good, and H5N1 could be moved a notch down on the watch list of viruses with the potential to cause a pandemic.
The only way to answer this question is to mimic reassortment in a laboratory under appropriate biosafety conditions. The H5N1 and human influenza H3 or H1 viruses need to be sequenced and cloned, their genes and proteins expressed in cell culture by means of reverse genetics, and the resulting viruses tested for identity with the wild virus. Subsequently, both viruses would be put in cell culture bottles, and any reassorted virus would be characterized for viability and tested for pathogenicity and transmissibility in animals. Some of this work has begun in a single laboratory but may not be completed before the end of 2005.
In 2003, avian influenza A (H5N1) virus was isolated from diseased pigs on farms in southern China, marking the first documented natural infection of pigs with any virus of the H5 subtype. That finding was not a major surprise, unlike the detection of H5N1 in its highly pathogenic form in dead migratory birds. Wild waterfowl are the natural reservoir of all influenza A viruses and have historically carried these viruses in a form with low pathogenicity, in evolutionary equilibrium, without showing signs of disease. Most recently, domestic ducks without apparent illness have been found in experiments to excrete H5N1 in its highly pathogenic form. Because these ducks can excrete large quantities of virus that is lethal to other poultry without the warning signal of visible illness, it has become difficult to give rural residents realistic advice on how to avoid exposure. The role of domestic ducks as a silent reservoir of H5N1 may help explain why several recent human cases could not be traced to contact with diseased poultry.
These hints of changes in the ecologic characteristics of H5N1 need further investigation. Data on the prevalence of H5N1 in aquatic birds and pigs are needed. We also need to know whether domestic ducks are a sustainable reservoir of the virus on their own or whether infection in other poultry is needed to maintain the transmission cycle. Pending answers to these questions, it will be difficult to introduce disease-control measures in animals that have the best chance of reducing opportunities for human exposure. Conducting serologic studies in pigs and taking samples from wild and domestic aquatic birds are relatively simple and inexpensive measures.
Although the 18 cases of avian influenza A (H5N1) virus infection that occurred in humans in Hong Kong in 1997 have been extensively investigated, there has been relatively little progress in our understanding of the natural history of the disease and its treatment. The occurrence of primary viral pneumonia in these cases, with no evidence of secondary bacterial infection, is of particular concern. Features important for case management, infection control in hospitals, and epidemiologic investigations of individual cases and clusters, but poorly understood, include the incubation period, antibody kinetics, patterns of virus excretion, the duration of infectivity, factors determining the outcome of disease, and the clinical effectiveness of various medical interventions. Should H5N1 eventually give rise to a pandemic, answers to these questions could guide the appropriate use — or nonuse — of costly and socially disruptive interventions such as social distancing, isolation and quarantine of patients and their contacts, and travel restrictions. They will also help determine the best procedures for diagnosis and sampling and for triage in hospitals, as well as the level of infection control needed to prevent nosocomial spread.
Until now, collaborative studies, such as that reported by Ungchusak et al. in this issue of the Journal,1 have rarely brought clinical, epidemiologic, and virologic experts together. Collection of sequential samples from patients is often begun too late, or data from patients and epidemiologic data are not accompanied by vital complementary information, such as information on case management and hospital infection-control measures. An international clinical-research network on avian influenza in selected countries in Asia could be the foundation for faster and more productive investigations and could serve as a nucleus for an integrated clinical, epidemiologic, and virologic network on emerging infectious diseases.
Vaccine licensing depends on clinical studies to demonstrate safety, immunogenicity, and effectiveness. In the special context of preparedness for a pandemic, in which a rapid increase in production would be required and the demand for vaccines would far exceed supply, these studies must perform a second function: to provide data that will make possible vaccine formulations that make maximal use of limited antigen. Because manufacturing capacity is finite and cannot be augmented quickly, research is necessary to establish the smallest amount of antigen per dose that will confer sufficient protection. For example, the use of certain adjuvants can reduce the antigen requirement per vaccinee by half to three quarters. There is little experience with and great variability in the immunogenicity of avian influenzaviruses in humans, so clinical trials are urgently needed to obtain answers quickly. International coordination to decide on clinical-study protocols is indispensable because of the large number of possible vaccine formulations and the many variables to consider (e.g., type of vaccine, antigen dose, number of doses, age groups, and adjuvants) and the fact that most such trials will be conducted by pharmaceutical companies on a commercial basis. Coordination of clinical trials and rapid sharing of data are required to expedite research in the face of a possible pandemic of avian influenza A due to the H5N1 strain.
A virus with the potential to cause a pandemic could emerge suddenly, by way of a single reassortment event, or more gradually, by adaptive mutations during human infections, with the virus incrementally improving its transmissibility. Should the latter occur (and be detected by good surveillance), its detection could open an opportunity to intervene with antiviral drugs or a vaccine and thus forestall international spread or even eliminate a virus with low transmissibility. Though it is an attractive option, no attempt has ever been made to interrupt the transmission of an influenzavirus; the results of such an enormous and costly undertaking remain uncertain. The option deserves further investigation, however, particularly when viewed against the profound effect a delay in global spread and a flattening of the peak in disease prevalence could have during the initial phase of a pandemic. Its pursuit further depends on assessment of the feasibility and logistic requirements of bringing interventions to large urban populations and scattered rural residents in Asia. Without such feasibility data, any detailed planning, including funding proposals, will be severely hampered.
Past pandemics have typically hit world populations like a flash flood. They have started abruptly and explosively, swept through populations, and left considerable damage in their wake. They could not be stopped but peaked rapidly and then subsided almost as abruptly as they began. The emergence of human cases of avian influenza A (H5N1) virus infection in Asia is an unprecedented warning and has given the world more time to prepare than anyone might have expected. Given the well-documented consequences of pandemics, it seems prudent to find answers to these questions. We need to put up safeguards while the storm is still gathering.